$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

고전압 펄스 전기장을 이용한 식품의 상업적 살균
Commercial pasteurization of foods using high voltage pulsed electric fields treatment 원문보기

식품과학과 산업 = Food science and industry, v.53 no.3, 2020년, pp.284 - 294  

신정규 (전주대학교 스마트식품융합기술 ICC)

초록
AI-Helper 아이콘AI-Helper

고전압 펄스 전기장 기술은 전기 에너지를 활용한 친환경적 비가열 공정 기술로서 꾸준히 업계의 관심을 받고 있다. 장치에 대한 이해의 부족과 장비가격에 대한 부담으로 실제 상업적 적용이 크게 증가하지 않고 있으나 가열 공정을 대체할 수 있는 기술로서의 가능성은 지속적으로 제기되고 있다. PEF 공정을 이용한 식품의 살균은 지금까지는 대부분 과일 및 야채 주스 등 저점도의 액체 식품의 살균에 대해 적용되어 왔으나 최근에는 고점도의 스무디, 고농도 단백질 음료, 혼합 주스, 알코올 음료 등으로 적용 범위가 확대되었으며, 분말, 생육 등 고체 식품의 살균에 대한 연구도 진행되고 있다. 살균 이외에도 색소, 유용성분의 추출 및 회수, 생리활성물질의 활성화, 건조의 전처리 등의 식품 공정뿐만 아니라 씨앗의 발아율 증가, 육제품의 육질 변화, 전분의 물성 변화 등에 대한 적용이 연구되면서 기존의 식품 공정을 보완 또는 대체할 수 있는 기술로서 기대되고 있다.

Abstract AI-Helper 아이콘AI-Helper

High voltage pulsed electric field technology has been attracting attention in the the food industry as an eco-friendly nonthermal process technology using electrical energy. The lack of understanding of the equipment and the burden of equipment cost have not significantly increased the commercial a...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 본 고에서는 비가열 식품 가공 기술로서 전기에너지를 활용한 다양한 기술 중 가장 활발히 연구되고 있는 고전압 펄스 전기장을 이용한 식품의 상업적 살균을 중심으로 공정원리, 공정에 영향을 미치는 요인, 최근의 실제 식품에의 적용, 살균 이외의 적용에 대하여 요약 기술하였다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
화학적 보존제의 제한점은? 가열살균과 같은 전통적인 살균은 대부분의 영양소가 열에 민감하기 때문에 영양 손실이 발생할 수 밖에 없으며, 또한 가열에 따른 에너지 소비량이 커서 생산 비용 증가의 원인이 되기도 한다. 식품의 또 다른 품질 유지 방법으로 사용되는 화학적 보존제의 경우에는 소비자들의 첨가물에 대한 거부감이 커지면서 사용을 제한하는 경향이 뚜렷해지고 있어 제한점이 있기도 하다. 따라서 식품업계에서는 소비자의 요구변화에 따라 가열살균과 화학적 처리방법을 대체하면서도 맛, 영양, 품질이 좋은 제품을 만들 수 있는 새로운 공정을 찾고 있다(Shahin 등, 2018; Shin 등, 2010).
가열살균과 같은 전통적인 살균의 한계점은? 식품 소비에 있어서 소비자들의 건강과 고품질에 대한 요구가 지속적으로 증가하면서 영양 손실을 최소화하면서도 품질 유지가 지속될 수 있는 새로운 기술에 대한 필요성도 계속 제기되고 있다. 가열살균과 같은 전통적인 살균은 대부분의 영양소가 열에 민감하기 때문에 영양 손실이 발생할 수 밖에 없으며, 또한 가열에 따른 에너지 소비량이 커서 생산 비용 증가의 원인이 되기도 한다. 식품의 또 다른 품질 유지 방법으로 사용되는 화학적 보존제의 경우에는 소비자들의 첨가물에 대한 거부감이 커지면서 사용을 제한하는 경향이 뚜렷해지고 있어 제한점이 있기도 하다.
전기 또는 전기장을 바탕으로 하는 공정의 문제점은? 이러한 노력 가운데 효과적이면서도 비용 효율적인 방법 중 하나로 전기 또는 전기장(EFs, electric fields)을 활용한 공정에 대한 연구와 응용이 늘고 있다. 그러나 전기에너지를 바탕으로 하는 공정은 기술적 잠재성이 있음에도 불구하고 운영상의 문제, 기본적인 지식의 부족으로 상업적 규모의 적용이 늦어지고 있기도 하다(Galanakis, 2013; Rocha 등, 2018; Sakr과 Liu, 2014). 그럼에도 불구하고 전기에너지를 활용한 공정은 특정분야, 특히 살균과 추출과 같은 분야에서는 많은 연구와 적용이 이루어지고 있으며, 고효율의 생산공정으로서 가능성이 확인되고 있다(Puértolas과 Barba, 2018).
질의응답 정보가 도움이 되었나요?

참고문헌 (63)

  1. Ahmed Z, Manzoor MF, Ahmad N, Zeng XN, ud Din Zia, Roobab U, Qayum A, Siddique R, Siddeeg A, Rahaman A. Impact of pulsed electric field treatments on the growth parameters of wheat seeds and nutritional properties of their wheat plantlets juice. Food Sci. Nutr. in press (2020) 

  2. Aibara S, Hisaki K, Watanabe J. Effects of high-voltage field treatment on wheat dough and bread-making properties. Cereal Chem. 64: 465-467 (1992) 

  3. Astrain-Redin L, Raso J, Gebrian G, Alvarez I. Potential of pulsed electric fields for the preparation of Spanish dry-cured sausages. Sci. Rep. 9: 16042 (2019) 

  4. Barba FJ, Parniakov O, Pereira SA, Wiktor A, Grimi N, Boussetta N, Saraiva JA, Raso J, Martin-Belloso O, Witrowa-Rajchert D, Lebovka N, Vorobiev E. Current applications and new opportunities for the use of pulsed electric fields in food science and industry. Food Res. Intl. 77: 773-798 (2015) 

  5. Barba FJ, Zhu Z, Koubaa M, Sant'Ana AS, Orlien V. Green alternative methods for the extraction of antioxidant bioactive compounds from winery wastes and by-products: a review. Trends Food Sci. Tech. 49: 96-109 (2016) 

  6. Bekhit AEDA, van de Ven R, Suwandy V, Fahri F, Hopkins DL. Effect of pulsed electric field treatment on cold-boned muscles of different potential tenderness. Food Bioprocess Technol. 7: 3136-3146 (2014) 

  7. Beveridge JR, MacGregor SJ, Anderson JG, Fouracre RA. The influence of pulse duration on the inactivation of bacteria using monopolar and bipolar profile pulsed electric fields. IEEE T. Plasma Sci. 33: 1287-1293 (2005) 

  8. Buckow R, NG S, Toepfl S. Pulsed electric field processing of orange juice : a review on microbial, enzymatic, nutritional, and sensory quality and stability. Compr. Rev. Food Sci. F. 12: 455-467 (2013) 

  9. Caminiti IM, Palgan I, Noci F, Munoz A, Whyte P, Cornin DA, Morgan DJ, Lyng JG. The effect of pulsed electric fiels (PEF) in combination with high intensity light pulse (HILP) on Escherichia coli inactivation and quality attributes in apple juice. Innov. Food Sci. Emerg. 12: 118-123 (2011) 

  10. Clemente I, Condon-Abanto S, Pedros-Garrido S, Whyte P, Lyng JG. Efficacy of pulsed electric fields and antimicrobial compounds used alone and in combination for the inactivation of Campylobactor jejuni in liquids and raw chicken. Food Control 107: 106491 (2020) 

  11. Doevenspeck H. Influencing cells and cell walls by electrostatic impulses. Fleischwirtschaft 13: 968-987 (1961) 

  12. Dunn JE, Pearlman JS. Methods and apparatus for extending the shelf life of fluid food products. US Patent 4,695,472 (1987) 

  13. Ferreira VJ, Arnal AJ, Roya Patricia, Garcia-Armingol T, Lopez-Sabiron AM, Ferreira G. Energy and resource efficiency of electroporation-assisted extraction as an emerging technology towards a sustainable bio-economy in the agri-food sector. J. Clean. Prod. 233: 1123-1132 (2019) 

  14. Galanakis CM. Emerging technologies for the production of nutraceuticals from agricultural by-products: a viewpoint of opportunities and challenges. Food Bioprod. Process 91: 575-579 (2013) 

  15. Grahl T, Sitzmann W, Markl H. Killing of microorganisms in fluid media by high-voltage pulses. pp. 675-678. In: Proceedings of the 10th DECHEMA Biotechnol. Conference Series, 5B, Verlagsgesellsellschaft, Hamburg, Germany (1992) 

  16. Ha KY, Shin JK, Lee SH, Cho HY, Pyun YR. Nonthermal pasterization of carrot juice by high voltage pulsed electric fields with exponential decay pulse. Korean J. Food Sci. Technol. 31: 1577-1582 (1999) 

  17. Hoffmann GA. Cell in electric fields, physical and practical electron aspects of electro- cell fusion and electroporation. In: Electroporation and Electrofusion in Cell Biology, Neumann E, Sower AE, Jordan CA. Plenum Press, New York, NY, USA (1989) 

  18. Hong SI. Inactivation of Lactobacillus plantarum by high pressure carbon dioxide. Ph.D. Thesis, Yonsei Universtiy, Seoul, Korea (1997) 

  19. Hulsheger H, Niemann EG. Lethal effects of high voltage pulses on E. coli K12, Rad. Environ. Biohpys. 18: 281-288 (1980) 

  20. Hulsheger H, Potel J, Niemann EG. Killing of bacteria with electric pulses of high field stength. Rad. Environ. Biophys. 20: 53-65 (1981) 

  21. Hulsheger H, Potel J. Niemann EG. Electric field effects on bacteria and yeast cells. Rad. Environ. Biophys. 22: 149-162 (1983) 

  22. Jager H, balasa A, Knorr D. Food industry applications for pulsed electric fields. pp. 181-216. In: Electrotechnologies for Extraction from Food Plants and Biomaterials. Eugene V, Nikolai L. Springer, Berlin, Germany (2009) 

  23. JalteM, LanoiselleJL, Lebovka NI, Vorobiev E. Freezing of potato tissue pre-treatment by pulsed electric fields. LWT-Food Sci. Technol. 42: 576-580 (2009) 

  24. Lee SJ, Bang IH, Choi HK, Min SC. Pasteurization of mixed mandarin and hallabong tangor juice using pulsed electric field processing combined with heat. Food Sci. Biotechnol. 27: 669-675 (2018) 

  25. Lee SJ, Shin JK. Intra- an extra-cellular mechanisms of Sacchromyces cerevisiae inactivation by high voltage pulsed electric fields treatment. Korean J. Food Sci. Technol. 47: 87-94 (2015) 

  26. Leungo E, Raso J. Pulsed electric field-assisted extraction of pigments from Chlorella vulgaris. pp 2939-2954. In: Handbook of Electroporation. MiklavcicD. (Ed.), Springer Nature, Cham, Switzerland (2017) 

  27. Liang R, Zhang Z, Lin S. Effects of pulsed electric field on intracellular antioxdant activity and antioxidant enzyme regulating capacities of pine nut (Pinus koraiensis) peptide QDHCH in HepG2 cells. Food Chem. 237: 793-802 (2017) 

  28. Liu C, Pirozzi A, Ferrari G, Vorobiev E, Grimi N. Effects of pulsed electric fields on vacuum drying and quality characteristics of dried carrot. Food Bioprocess Tech. 13: 45-52 (2020) 

  29. Mannozzi C, Rompoonpol K, Fauster T, Tylewicz U, Romani S, Rosa MD, Jaeger H. Influence of pulsed electric field and ohmic heating pretreatments on enzyme and antioxidant activity of fruit and vegetable juices. Foods 8: 247 (2019) 

  30. Martin-Belloso O, Elez-Martinez P. Food safety aspects of pulsed electric fields. pp 184-217. In: Emerging Technology for Food Processing. Sun DW, Academic Press, Cambridge, MA, USA 

  31. Mohamed MEA, Eissa AHA. Pulsed electric fields for food processing technology. pp 275-306. In: Structure and Function of Food Engineering. IntechOpen, London, UK (2012) 

  32. Park HC, Shim JM, Lee JH, Lee DU. Application of pulsed electric field on food processing. Food Ind. 45: 70-75 (2012) 

  33. Park HR, Yoon SJ, Park HS, Shin JK. Physiological changes of Saccharomyces cerevisiae by high voltage pulsed electric field treatment. Korean J. Food Sci. Technol. 45: 590-597 (2013) 

  34. Pina-Perez M, Martinez-Lopez A, Rodrigo D. Cocoa powder as a natural ingredient revealing an enhancing effect to inactivate Cronobacter sakazakki cells treated by pulsed electric fields in infant milk formula. Food Control 32: 87-92 (2013) 

  35. Puertolas E, Barba FJ. Electrotechnologies applied to valorization of by-produtcts from food industry: main findings, energy and economic cost of their industrialization. Food Bioprod. Process. 100: 172-184 (2016) 

  36. Qin BL, Zhang Q, Barbosa-Canovas GV, Swanson BG, Pedrow PD. Inactivation of microorganisms by pulsed electric fields of different voltage waveforms. IEEE T. Dielect. El. In. 1: 1047-1057 (1994) 

  37. Rezaeimotlagh A, Tang KSC, Resch M, Cullen PJ, Trujillo FJ. Inactivation kinetics of Escherichia coli in cranberry juice during multistage treatment by electric fields. Food Res. Intl. 106: 780-790 (2018) 

  38. Rocha CMR, Genisheva Z, Ferreira-Santos P, Rodrigues R, Vincente AA, Teixeira JA, Pereira RN.. Electric field-based technologies for valorization of bioresources. Bioresource Technol. 254: 325-339 (2019) 

  39. Rogob EA. Electroplasmolysis. p 86. In: Electrical and Physical Process of Food. Agriculture Production, Moscow, Russia (1988) 

  40. Sakr M, Liu S. A comprehensive review on applications of ohmic heating (OH). Renew Sustain Energy Rev. 39:262-260 (2014) 

  41. Sale AJ, Hamilton WA. Effect of high electric fields on microorganisms. I. Killing of bacteria and yeast. Biochim. Biophys. Acta 148: 781-788 (1967) 

  42. Sale AJ, Hamilton WA. Effect of high electric fields on microorganisms. II. Mechanisms of action of the lethal effect. Biochim. Biophys. Acta 148: 789-800 (1967) 

  43. Saravia J, Oliviera JC, Lemos A, Hendrickx M. Analysis of the kinetic pattern of horseradish peroxidase thermal inactivation in sodium phophate buffer solutions of different ionic strength. Intl. J. Food Sci. Technol. 31: 223-231 (1996) 

  44. Schottroff F, Gratz M, Krottenthaler A, Johnson NB, Bedard MF, Jaeger H. Pulsed electric field preservation of liquid whey protein formulations - influence of process parameters, pH, and protein content on the inactivation of Listeria innocua and the retention of bioactive ingredients. J. Food Eng. 243: 142-152 (2019) 

  45. Scottroff F, Johnson K, Johnson NB, Bedard MF, Jaeger H. Challenges and limitations for the decontamination of high solids protein solutions at neutral pH using pulsed electric fields. J. Food Eng. 268: 109737 (2020) 

  46. Shahin R, Mohamed K, Anderson SS, Ralf G. Mechanisms of microbial inactivation by emerging technologies. pp 111-132. In: Innovative Technologies for Food Preservation. Francisco JB, Anderson SS, Vibeke O, Mohamed K. Academic Press, Cambridge, MA. USA (2018) 

  47. Shin JK, Ha KY, Pyun YR, Choi MS, Chung MS. Pasteurization of carrot juice by high voltage pulsed electric fields with square wave pulse and quality change during storage. Korean J. Food Sci. Technol. 39: 506-514 (2007) 

  48. Shin Jk, Kim BR, Kim AJ. Nonthermal food processing technology using electric power. Food Ind. 43: 21-34 (2010) 

  49. Shin JK, Pyun YR. Sterilization of food using high voltage pulsed electric fields. Food Ind. 33: 27-35 (2000) 

  50. Shin JK. Inactivation of Sacchromyces cerevisiae by high voltage pulsed electric fields, Ph.D Thesis, Yonsei University, Seoul, Korea (2000) 

  51. Shin JK. The effect of operating parameters on inactivation of Saccharomyces cerevisiae by high voltage pulsed electric fields. Food Eng. Prog. 12: 90-96 (2008) 

  52. Simonis P, Kresulis S, Stankevich V, Kamilija S, Striguniene K, Ragoza G, Arunas S. Pulsed electric field effects on inactivation of microorganisms in acid whey. Intl. J. Food Microbiol. 291: 128-134 (2019) 

  53. Sitzmann W. High voltage pulse techniques for food preservation. pp 236-252. In: New Methods of Food Preservation, Gould GW, Chapman & Hall, London, UK (1995) 

  54. Son SM, Shin JK. The effect of environmental factors on inactivation of Saccharomyces cerevisiae by high voltage pulsed electric fields. Food Eng. Prog. 12: 154-162 (2008) 

  55. Starodub GP, Livinskiy SA, Gabriyelyan SZ, Lubaya SI, Afanacev MA. Process control of pre-sowing seed treatment by pulsed electric field. Acta Technol. Agri. 1: 28-32 (2018) 

  56. Timmermans RAH, Nederhoff AL, Nierop Groot MN, van Boekel MAJS, Mastwijk HC. Effect of electrical field strength applied by PEF processing and storage temperature on the outgrowth of yeasts and moulds naturally present in a fresh fruit smoothie. Intl. J. Food Microbiol. 230: 21-30 (2016) 

  57. Timmermans RAH, Nierop Groot MN, Nederhoff AL, van Boekel MAJS, Master AM, Mastwijk HC. Pulsed electric field processing of different fruit juices: impact of pH and temperature on inactivation of spoilage and pathogenic microorganisms. Intl. J. Food Microbiol. 173: 105-111 (2014) 

  58. van Wyk S, Farid MM, Silva FVM. $SO_2$ high pressure processing and pulsed electric field treatments of red wine: effect on sensory, Brettanomyces inactivation and other quality parameters during one year storage. Innov. Food Sci. Emerg. Technol. 48: 204-211 (2018) 

  59. Vega-Mercado H, Gongora-Nieto MM, Barbosa-Canovas GV, Swanson BG. Pulsed electric fields in food preservation. pp 783-813, In: Handbook of Food Preservation. Rahman MS, CRC press, Boca Raton, FL, USA (2007) 

  60. Vega-Mercado H, Pothakamury UR, Chang FJ, Barbosa-Canovas GC, Swanson BG. Inactivation of Escherichia coli by combiniation pH, ionic strength and pulsed electric fields hurdles. Food Res. Intl. 29: 117-121 (1996) 

  61. Yu Y, Jin TZ, Xiao G. Effects of pulsed electric fields pretreatment and drying method on drying characteristics and nutritive quality of blueberries. J. Food Proc. Preserv. e13303 (2017) 

  62. Zhu F. Modifications of starch by electric field based techniques. Trends Food Sci. Tech. 75: 158-169 (2018) 

  63. Zimmermann U. Electric breakdown, electropermeabilization and electrofusion. Rev. Physiol. Biochem. Pharmacol. 105: 176-256 (1986) 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로