$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

굴(Crassostrea gigas)양식 중단 이후 퇴적물 질 회복에 관한 지화학적 지표 탐색
Geochemical Indicators for the Recovery of Sediment Quality after the Abandonment of Oyster Crassostrea gigas Farming in South Korea 원문보기

한국수산과학회지 = Korean journal of fisheries and aquatic sciences, v.53 no.5, 2020년, pp.773 - 783  

심보람 (국립수산과학원 어장환경과) ,  김형철 (국립수산과학원 연구기획과) ,  강성찬 (국립수산과학원 어장환경과) ,  이대인 (국립수산과학원 어장환경과) ,  홍석진 (국립수산과학원 갯벌연구센터) ,  이상헌 (부산대학교 해양학과) ,  김예진 (부산대학교 해양학과)

Abstract AI-Helper 아이콘AI-Helper

In order to evaluate the recovery of fishing ground environment after the cessation of aquaculture farming, we examined the variation in sediment quality over time using different geochemical factors and investigated whether these factors are indicators of sediment quality recovery. The study area w...

주제어

표/그림 (10)

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 이러한 배경을 바탕으로 본 논문은 처음으로 우리나라에서 대체개발에 따라 굴 양식장이 이동된 후 퇴적물 내 화학적 인자들의 변화와 회복양상에 관하여 연구하였다. 또한 양식시설이 새롭게 설치된 해역에서 양식활동에 따른 오염의 진행에 관한 연구도 함께 수행하였다. 이를 바탕으로 어장회복과 휴식기간과의 상관성을 파악하고, 현재 어장관리법 제11조2에 따라 어류양식장에만 국한되어 있는 어장환경평가제도에서 평가 품종 확대에 따른 패류양식장의 퇴적물 오염실태와 변화과정을 이해하기 위한 기초자료로 활용할 수 있을 것이다.
  • 장기간 고밀도 양식이 이루어져 어장환경이 상대적으로 좋지 않은 남해안에서 어장시설물 이동(재배치)과 이에 따른 환경인자의 변화를 모니터링하고 회복가능성을 진단하는 연구는 어장환경관리 측면에서 매우 중요하다. 이러한 배경을 바탕으로 본 논문은 처음으로 우리나라에서 대체개발에 따라 굴 양식장이 이동된 후 퇴적물 내 화학적 인자들의 변화와 회복양상에 관하여 연구하였다. 또한 양식시설이 새롭게 설치된 해역에서 양식활동에 따른 오염의 진행에 관한 연구도 함께 수행하였다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
어장환경 회복에 관한 연구에서 적용된 주요 화학적 인자로는 어떤 것들이 있는가? 대부분 연구 대상은 어류(연어, 송어, 돔 등)양식장이었으며 패류 양식장에 대한 조사는 거의 없었다. 어장환경 회복에 관한 연구에서 적용된 주요 화학적 인자로는 유기물(organic matter), 총유기탄소(total organic carbon, TOC), 황화물(sulfide), 산화환원전위(oxidation-reduction potential, ORP)가 있으며, 이 외에도 철(Fe), 아연(Zn), 구리(Cu) 등과 같은 미량금속 또는 총인(total phosphate), 지질(lipids, fatty acids, sterols) 등 다양한 항목들이 지역적 특성과 연구목적 등에 따라 적용되었다. 장기간 고밀도 양식이 이루어져 어장환경이 상대적으로 좋지 않은 남해안에서 어장시설물 이동(재배치)과 이에 따른 환경인자의 변화를 모니터링하고 회복가능성을 진단하는 연구는 어장환경관리 측면에서 매우 중요하다.
국내 패각류 중에서 가장 양식 생산량이 높은 품종은? 우리나라는 연안 해역에서 어류, 패류, 해조류 등 다양한 품종을 양식하고 있으며, 특히 패각류(Bivalves) 생산량은 중국 다음으로 높다(FAO, 2020). 전체 패류 양식생산량의 약 74%는 굴이며, 굴 양식생산량은 1990년에 약 20만톤에서 2019년 기준 약 30만톤으로 꾸준히 증가하고 있다(MOF, 2020). 패류 양식은 경상남도와 전라남도 연안 해역을 중심으로 성행하고 있으며, 2018년 기준 우리나라 전체 굴 생산량의 81%가 경상남도에서 생산되고 있다(MOF, 2020).
국내 패류 양식은 주로 어느 지역에서 성행하는가? 전체 패류 양식생산량의 약 74%는 굴이며, 굴 양식생산량은 1990년에 약 20만톤에서 2019년 기준 약 30만톤으로 꾸준히 증가하고 있다(MOF, 2020). 패류 양식은 경상남도와 전라남도 연안 해역을 중심으로 성행하고 있으며, 2018년 기준 우리나라 전체 굴 생산량의 81%가 경상남도에서 생산되고 있다(MOF, 2020). 경상남도의 경우 통영 및 거제시 관할 칠천도, 가조도, 원문만에 양식장이 밀집되어 있고, 참굴과 피조개 양식생산량이 높으며(NFRDI, 2002), 특히 원문만은 수하식 패류양식이 가장 활발하다(Cho et al.
질의응답 정보가 도움이 되었나요?

참고문헌 (42)

  1. Baudinet D, Alliot E, Berland B, Grenz C, Plante-Cuny MR, Plante R and Salen-Picard C. 1990. Incidence of a mussel culture on biogeochemical fluxes at the sediment water interface. Hydrobiologia 207, 187-196. https://doi.org/10.1007/BF00041456. 

  2. Brooks KM, Stierns AR, Mahnken CVW and Blackburn DB. 2003. Chemical and biological remediation of the benthos near Atalantic salmon farms. Aquaculture 2019, 355-377. https://doi.org/10.1016/S0044-8486(02)00528-8. 

  3. Cho CH, Yang HS, Park KY and Youm MK. 1982. Study on bottom mud of shellfish farms in Jinhae bay. Korean J Fish Aquat Sci 15, 35-41. 

  4. Cho CH. 1991. Mariculture and eutrophication in Jinhae Bay, Korea. Mar Pollut Bull 23, 275-279. https://doi.org/10.1016/0025-326X(91)90687-N. 

  5. Cho YS, Kim YB, Lee WC, Hong SJ and Lee SM. 2013. The trophic state assessment using biochemical composition in the surface sediments, the southern coast of Korea. J Korean Soc Mar Environ Saf 19, 101-110. https://doi.org/10.7837/kosomes.2013.19.2.101. 

  6. Choi MK, Lee IS, Hwang DW, Kim HC, Yoon SP, Yun SR, Kim CS and Seo IS. 2017. Organic enrichment and pollution in surface sediments from Jinhae and Geoje-Hansan Bays with dense oyster farms. Korean J Fish Aquat Sci 50, 777-787. https://doi.org/10.5657/KFAS.2017.0777. 

  7. Choi MK, Moon HB, Kim SS and Park JS. 2005. Evaluation of sewage pollution by coprostanol in the sediments from Jinhae Bay, Korea. Korean J Fish Aquatic Sci 38, 118-128. https://doi.org/10.5657/kfas.2005.38.2.118. 

  8. Como S, Magni P, Casu D, Floris A, Giordani G, Natale S, Fenzi GA, Signa G and Falco GD. 2007. Sediment characteristics and macrofauna distribution along a human-modified inlet in the Gulf of Orstano (Sardlnly, Italy). Mar Pollut Bull 54, 733-744. https://doi.org/10.016/j.marpolbul.2007.01.007. 

  9. Crawford CM, Macleod CKA and Mitchell IM. 2003. Effects of shellfish farming on the benthic environment. Aquaculture 224, 117-140. https://doi.org/10.1016/S0044-8486(03)00210-2. 

  10. Danovaro R, Gambi C, Luna GM and Mirto S. 2004. Sustainable impact of mussel farming in the Adriatic Sea (Mdeiteeranean Sea): evidence from biochemical, microbial and meiofaunal indicators. Mar Pollut Bull 496, 325-333. https://doi.org/10.1016/j.marpolbul.2004.02.038. 

  11. Dubois M, Gills KA, Hamilton JK, Roberts PA and Smith F. 1956. Colorimetric method for the determination of sugars and related substances. Anal Chem 28, 350-356. https://doi.org/10.1021/ac60111a017. 

  12. Ervik A, Hansen PK, Aure J, Stigebrandt A, Johannessen P and Jahnsen T. 1997. Regulating the local environmental impact of intensive marine fish farming Ι. The concept of the MOM system (Modeling-Ongrowinf fish farms-Monitoring). Aquaculture 158, 85-94. https://doi.org/10.1016/S0044-8486(97)00186-5. 

  13. Fabiano M, Danovaro R and Fraschetti S. 1995. A three-year time series of elemental and biochemical composition of organic matter in subtidal sandy sediments of the Ligurian Sea (northwestern Mediterranean). Cont Shelf Res 15, 1453-1469. https://doi.org/10.1016/0278-4343(94)00088-5. 

  14. FAO (Food and Agriculture Organization of the United Nations). 2020. The state of world fisheries and aquaculture. FAO, Rome, Italy, 1-224. https://doi.org/10.4060/ca9229en. 

  15. FOC (Fisheries and Oceans Canada). 2018. Regulating and monitoring British Columbia's marine finfish aquaculture facilities 2018. Fisheries and Oceans Canada, Canada, 1-23. 

  16. Folk RL. 1968. Petrology of sedimentary rock. Hemphill Publishing Co., Austin, TX, U.S.A., 1-170. 

  17. Grant J, Scott DB and Schafer CT. 1995. A multidisciplinary approach to evaluating impacts of shellfish aquaculture on benthic communities. Estuaries 18, 124-144. https://doi.org/10.2307/1352288. 

  18. Hargrave BT. 1994. Modeling benthic impacts of organic enrichment from marine aquaculture. Can Tech Rep Fish Aquat Sci report, Dartmouth, Canada, 1-125. 

  19. Jung RH, Seo IS, Choi MK, Park SR, Choi BM, Kim MH, Kim YJ and Yun JS. 2014. Community structure and health assessment of macrobenthic assemblages during spring and summer in the shellfish farming ground of Wonmun Bay, on the southern coast of Korea. Korean J Fish Aquat Sci 47, 908-926. https://doi.org/10.5657/KFAS.2014.0908. 

  20. Karakassis I, Hatziyanni E, Tsapakis M and Plaiti W. 1999. Benthic recovery following cessation of fish farming: a series of successes and catastrophes. Mar Ecol Prog Ser 184, 205-218. https://doi.org/10.3354/meps184205. 

  21. Keeley NB, Macleod CK, Hopkins GA and Forrest BM. 2014. Spatial and temporal dynamics in macrobenthos during recovery from salmon farm induced organic enrichment: When is recovery complete? Mar Pollut Bull 80, 250-262. https://doi.org/10.1016/j.marpolbul.2013.12.008. 

  22. Kim HC, Lee JH, Lee WC, Hong SJ, Kang JJ, Lee DB, Jo NE and Bhavya PS. 2018. Decoupling of macromolecular compositions of particulate organic matters between the water columns and the sediment in Geoje-Hansan Bay, South Korea. Ocean Sci 53, 735-743. https://doi.org/10.1007/s12601-018-0052-9. 

  23. Kim NS, Kang H, Kwon M-S, Jang H-S, Kim JG. 2016. Comparison of seawater exchange rate of small scale inner Bays within Jinhae Bay. J. Korean Soc Mar Environ Energy 19, 74-85. https://doi.org/10.7846/JKOSMEE.2016.19.1.74. 

  24. Kim SY, Lee YH, Kim YS, Shim JG, Ye MJ, Jeon JW, Hwang JR and Jun SH. 2012. Characteristics of Marine Environmental in the hypoxia season at Jinhae bay in 2010. Korean J Nat Conserv 6, 115-129. https://doi.org/10.11624/KJNC.2012.6.2.115. 

  25. Lee CW, Kwon YT, Kwon HB, Boo MH and Yang KS. 2000. Eutrophication characteristics in the shellfish farms, the southern coastal sea of Korea. J Korean Soc Mar Environ Energy 3, 24-33. 

  26. Lee IC, Oh YJ and Kim HT. 2008. Annual variation in oxygen-deficient water mass in Jingae Bay, Korea. Korean J Fish Aquat Sci 41, 134-139. https://doi.org/10.5657/kfas.2008.41.2.134. 

  27. Lowry OH, Rosebrough NJ, Fart AL and Randall RJ. 1951. Protein measurement with the Folin phenol reagent. J Biol Chem 193, 265-275. 

  28. Macleod CK, Moltschaniwskyj NA, Crawford CM. 2006. Evaluation of short-term fallowing as a strategy for the management of recurring organic enrichment under salmon cages. Mar Pollut Bull 52, 1458-1466. https://doi.org/10.1016/j.marpolbul.2006.05.007. 

  29. Marsh BJ and Weinstein DB. 1966. Simple charring method for determination of lipids. J Lipid Res 7, 574-576. 

  30. Mazzola A, Miroto S, Danovaro R and Fabiano M. 2000. Fish farming effects on benthic community structure in coastal sediments: analysis of the meiofaunal recovery. ICES J Mar Sci 57, 1454-1461. https://doi.org/10.1006/jmsc.2000.0904. 

  31. McGhie TK, Crawford CM, Mitchell IM and Brien DO. 2000. The degradation of fish cage waste in sediments during fallowing. Aquaculture 187, 351-366. https://doi.org/10.1016/S0044-8486(00)00317-3. 

  32. MOF (Ministry of Oceans and Fisheries). 2013. Korean standard method of examination for marine environment. MOF report, Sejong, Korea, 1-516. 

  33. MOF (Ministry of Ocean and Fisheries). 2020. Fishery produce statistical research. Retrieved from http://kosis.kr/statHtml/statHtml.do?orgid101&tblIdDT_1EW0001&conn_pathI3 on Mar 21, 2020. 

  34. Moon JH. 2009. A study of factors on algal bloom outbreaks in Jinhae Bay by numerical and PCA methods, Ph.D. dissertation, Chonnam National University, Gwangju, Korea, 1-167. 

  35. NFRDI (National Fisheries Research and Development Institute). 2002. Environmental research of aquaculture farm. NFRDI report, Sejong, Korea, 401. 

  36. NFRDI (National Fisheries Research and Development Institute). 2012. Standard manual of pacific oyster hanging culture. NFRDI report, Sejong, Korea, 205. 

  37. NIFS (Natioal Institute of Fisheries Science). 2015. Establishment of environmental quality standards for sustainable shellfish farms. NIFS report, Busan, Korea, 88. 

  38. Pereira PMF, Black KD, McLusky DS and Nickell TD. 2004. Recovery of sediments after cessation of marine fish farm production. Aquaculture 235, 315-330. https://doi.org/10.1016/j.aquaculture.2003.12.023. 

  39. Puseddu A, Fiordelmondo C, Polymenakou P, Polychronaki T, Tselepides A and Danovaro R. 2005. Effects of the bottom trawling on the quantity and biochemical composition of organic matter in coastal marine sediments (Thermaikos Gulf, northwestern Aehean Sea). Cont Shelf Res 25, 2491-2505. https://doi.org/10.1016/j.csr.2005.08.013. 

  40. Shin YK, Kim SY, Moon TS, Park MS and Kim Y. 2002. Seasonal changes of biochemical composition in cultured bivalves. Korean J Malacol 18, 1-8. 

  41. Yokoyama H. 2002. Impact of fish and pearl farming in the benthic environments in Gokasho Bay: Evaluation from seasonal fluctuations of the macrobenthos. Fish Res 68, 258-268. https://doi.org/10.1046/j.1444-2906.2002.00420.x. 

  42. Yokoyama H. 2003. Environmental quality criteria for fish farms in Japan. Aquaculture 226, 45-56. https://doi.org/10.1016/S0044-8486(03)00466-6. 

저자의 다른 논문 :

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로