$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

고성능 전기 화학 pH 센서를 위한 유연한 3차원 다공성 폴리아닐린 필름 제조
Preparation of Flexible 3D Porous Polyaniline Film for High-Performance Electrochemical pH Sensor 원문보기

공업화학 = Applied chemistry for engineering, v.31 no.5, 2020년, pp.539 - 544  

박홍준 (강원대학교 화학공학과) ,  박승화 (강원대학교 화학공학과) ,  김호준 (강원대학교 화학공학과) ,  이경균 (나노종합기술원) ,  최봉길 (강원대학교 화학공학과)

초록
AI-Helper 아이콘AI-Helper

본 연구에서는 넓은 면적의 나노필라 배열 필름을 기반으로 포토 및 소프트 리소그래피 기술과 화학적 희석 고분자 중합을 조절하여 3차원 다공성의 폴리아닐린 필름을 제조하였다. 3차원 폴리아닐린 필름은 계층 간 연결된 폴리아닐린 나노파이버들로 구성되어 있어, 넓은 표면적과 개방형의 다공성 구조를 가지는 3차원 계층형 나노웹 필름을 형성한다. 전기화학분석법을 기반으로 3차원 폴리아닐린 필름이 유연한 pH 센서 전극이 되는 것을 증명하였다. 3차원 폴리아닐린 필름은 이상적인 네른스트 거동과 근접한 60.3 mV/pH의 높은 민감도를 보였다. 또한, 3차원 폴리아닐린 전극은 10 min의 빠른 반응 속도, 우수한 반복성 그리고 높은 선택성을 나타내었다. 3차원 폴리아닐린 전극을 기계적으로 굽힌 상태에서 센서 특성을 측정하였을 때, 전극이 60.4 mV/pH의 높은 민감도를 보여줌으로써, 유연한 pH 센서 성능을 증명하였다.

Abstract AI-Helper 아이콘AI-Helper

A three-dimensional (3D) porous polyaniline (PANI) film was fabricated by a combined photo-and soft-lithography technique based on a large-area nanopillar array, followed by a controlled chemical dilute polymerization. The as-obtained 3D PANI film consisted of hierarchically interconnected PANI nano...

주제어

표/그림 (6)

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • This study demonstrated the application of a 3D porous film, composed of hierarchically interconnected PANI nanofibers, as a pH sensor electrode. The 3D PANI electrode was fabricated by a combined photo- and soft-lithography technique, followed by controlled dilute polymerization.
본문요약 정보가 도움이 되었나요?

참고문헌 (41)

  1. J. H. Yoon, S. B. Hong, S. Yun, S. J. Lee, T. J. Lee, K. G. Lee, and B. G. Choi, High performance flexible pH sensor based on polyaniline nanopillar array electrode, J. Colloid Interface Sci., 490, 53-58 (2017). 

  2. J. H. Yoon, K. H. Kim, N. H. Bae, G. S. Sim, Y. Oh, S. J. Lee, T. J. Lee, K. G. Lee, and B. G. Choi, Fabrication of newspaper-based potentiometric platform for flexible and disposable ion sensors, J. Colloid Interface Sci., 508, 167-173 (2017). 

  3. S. Islam, H. Bakhtiar, S. Naseem, M. S. B. A. Aziz, N. Bidin, S. Riaz, and J. Ali, Surface functionality and optical properties impact of phenol red dye on mesoporous silica matrix for fiber optic pH sensing, Sens. Actuators A, Phys., 276, 267-277 (2018). 

  4. K. Hammarling, M. Engholm, H. Andersson, M. Sandberg, and H. Nilsson, Broad-range hydrogel-based pH sensor with capacitive readout manufactured on a flexible substrate, Chemosensors, 6, 30 (2018). 

  5. S. Chinnathambi and G. J. W. Euverink, Polyaniline functionalized electrochemically reduced graphene oxide chemiresistive sensor to monitor the pH in real time during microbial fermentations, Sens. Actuators B, Chem., 264, 38-44 (2018). 

  6. S. Hou, J. Dong, M. Tang, X. Jiang, Z. Jiao, and B. Zhao, Triple-interpenetrated lanthanide-organic framework as dual wave bands self-calibrated pH luminescent probe, Anal. Chem., 91, 5455-5460 (2019). 

  7. Y. Zhao, M. Lei, S. Liu, and Q. Zhao, Smart hydrogel-based optical fiber SPR sensor for pH measurements, Sens. Actuators B, Chem., 261, 226-232 (2018). 

  8. M. Pospisilova, G. Kuncova, and J. Trogl, Fiber-optic chemical sensors and fiber-optic bio-sensors, Sensors, 15, 25208-25259 (2015). 

  9. H. J. Park, J. H. Yoon, K. G. Lee, and B. G. Choi, Potentiometric performance of flexible pH sensor based on polyaniline nanofiber arrays, Nano Converg., 6, 9 (2019). 

  10. H. J. Park, J. Jeong, J. H. Yoon, S. G. Son, Y. K. Kim, D. H. Kim, K. G. Lee, and B. G. Choi, Preparation of ultrathin defect-free graphene sheets from graphite via fluidic delamination for solid-contact ion-to-electron transducers in potentiometric sensors, J. Colloid Interface Sci., 560, 817-824 (2020). 

  11. S. G. Son, H. J. Park, Y. K. Kim, H. Cho, and B. G. Choi, Fabrication of low-cost and flexible potassium ion sensors based on screen printing and their electrochemical characteristics, ACS Appl. Chem. Eng., 30, 737-741 (2019). 

  12. J. H. Yoon, S. Kim, Y. Eom, J. M. Koo, H. Cho, T. J. Lee, K. G. Lee, H. J. Park, Y. K. Kim, H. Yoo, S. Y. Hwang, J. Park, and B. G. Choi, Extremely fast self-healable bio-based supramolecular polymer for wearable real-time sweat-monitoring sensor, ACS Appl. Mater. Interfaces, 11, 46165-46175 (2019). 

  13. J. H. Yoon, H. J. Park, S. H. Park, K. G. Lee, and B. G. Choi, Electrochemical characterization of reduced graphene oxide as an ion-to-electron transducer and application of screen-printed all-solid-state potassium ion sensors, Carbon Lett., 30, 73-80 (2020). 

  14. A. U. Alam, Y. Qin, S. Nambiar, J. T. W. Yeow, M. M. R. Howlader, N. Hu, and M. J. Deen, Polymers and organic materials-based pH sensors for healthcare applications, Prog. Mater. Sci., 96, 174-216 (2018). 

  15. W. P. Nikolajek, and H. M. Emrich, pH of sweat of patients with cystic fibrosis, Klin. Wschr., 54, 287-288 (1976). 

  16. M. B. Abelson, A. A. Sadun, I. J. Udell, and J. H. Weston, Alkaline tear pH in ocular rosacea, Am. J. Ophthalmol., 90, 866-869 (1980). 

  17. K. Chaisiwamongkhol, C. Batchelor-Mcauley, and R. G. Compton, Amperometric micro pH measurements in oxygenated saliva, Analyst, 142, 2828-2835 (2017). 

  18. S. Baliga, S. Muglikar, and R. Kale, Salivary pH: A diagnostic biomarker, J. Indian Soc. Periodonto., 17, 461-465 (2013). 

  19. T. Kwong, C. Robinson, D. Spencer, O. J. Wiseman, and F. E. K. Frankl, Accuracy of urine pH testing in a regional metabolic renal clinic: Is the dipstick accurate enough? Urolithiasis, 41, 129-132 (2013). 

  20. J. H. Yoon, S. Kim, H. J. Park, Y. K. Kim, D. X. Oh, H. Cho, K. G. Lee, S. Y. Hwang, J. Park, and B. G. Choi, Highly self-healable and flexible cable-type pH sensor for real-time monitoring of human fluids, Biosens. Bioelectron., 150, 111946 (2020). 

  21. J. Ding and W. Qin, Recent advances in potentiometric biosensors, Trends Anlyt. Chem., 124, 115803 (2020). 

  22. A. J. Bandodkar and J. Wang, Non-invasive wearable electrochemical sensors: A review, Trends Biotechnol., 32, 363-371 (2014). 

  23. L. Manjakkal, S. Dervin, and R. Dahiya, Flexible potentiometric pH sensors for wearable systems, RSC Adv., 10, 8594-8617 (2020). 

  24. M. Parrilla, I. Ortiz-Gomez, R. Canovas, A. Salinas-Castillo, M. Cuartero, and G. A. Crespo, Wearable potentiometric ion patch for on-body electrolyte monitoring in sweat: Toward a validation strategy to ensure physiological relevance, Anal. Chem., 91, 8644-8651 (2019). 

  25. Y. Qin, H. Kwon, M. M. R. Howlader, and M. J. Deen, Microfabricated electrochemical pH and free chlorine sensors for water quality monitoring: Recent advances and research challenges, RSC Adv., 5, 69086-69109 (2015). 

  26. W. Huang, H. Cao, S. Deb, M. Chiao, and J. C. Chiao, A flexible pH sensor based on the iridium oxide sensing film, Sens. Actuators A, Phys., 169, 1-11 (2011). 

  27. Y. Liao and J. Chou, Preparation and characteristics of ruthenium dioxide for pH array sensors with real-time measurement system, Sens. Actuators B, Chem., 128, 603-612 (2008). 

  28. L. Telli, B. Brahimi, and A. Hammouche, Study of a pH sensor with MnO2 and montmorillonite-based solid-state internal reference, Solid State Ion., 128, 225-259 (2000). 

  29. Y. Liao and J. Chou, Preparation and characterization of the titanium dioxide thin films used for pH electrode and procaine drug sensor by sol-gel method, Mater. Chem. Phys., 114, 542-548 (2009). 

  30. C. Tsai, J. Chou, T. Sun, and S. Hsiung, Study on the time-dependent slow response of the tin oxide pH electrode, IEEE Sens. J., 6, 1243-1249 (2006). 

  31. B. Lakard, G. Herlem, S. Lakard, R. Guyetant, and B. Fahys, Potentiometric pH sensors based on electrodeposited polymers, Polymer, 46, 12233-12239 (2005). 

  32. K. Shiu, F. Song, and K. Lau, Effects of polymer thickness on the potentiometric pH responses of polypyrrole modified glassy carbon electrode, J. Electroanal. Chem., 476, 109-117 (1999). 

  33. P. Marsh, L. Manjakkal, X. Yang, M. Huerta, T. Le, L. Thiel, J. C. Chiao, H. Cao, and R. Dahiya, Flexible iridium oxide based pH sensor integrated with inductively coupled wireless transmission system for wearable applications, IEEE Sens. J., 20, 5130-5138 (2020). 

  34. S. Shahrestani, M. C. Ismail, S. Kakooei, M. Beheshti, M. Zabihiazadboni, and M. A. Zavareh, Iridium oxide pH sensor based on stainless steel wire for pH mapping on metal surface, IOP Conf. Ser. Mater. Sci. Eng., 328, 012014 (2018). 

  35. M. Tabata, C. Ratanaporncharoen, A. Asano, Y. Kitasako, M. Ikeda, T. Goda, A. Matsumoto, J. Tagami, and Y. Miyahara, Miniaturized Ir/IrOx pH sensor for quantitative diagnosis of dental caries, Procedia Eng., 168, 598-601 (2016). 

  36. M. T. Ghoneim, A. Nguyen, N. Dereje, J. Huang, G. C. Moore, P. J. Murzynowski, and C. Dagdeviren, Recent progress in electrochemical pH-sensing materials and configurations for biomedical applications, Chem. Rev., 119, 5248-5297 (2019). 

  37. T. Lindfors, and A. Ivaska, pH sensitivity of polyaniline and its substituted derivatives, J. Electroanal. Chem., 531, 43-52 (2002). 

  38. S. H. Park, J. Jeong, S. J. Kim, K. H. Kim, S. H. Lee, N. H. Bae, K. G. Lee, and B. G. Choi, Large-area and 3D polyaniline nanoweb film for flexible supercapacitors with high rate capability and long cycle life, ACS Appl. Energy Mater., DOI: 10.1021/acsaem.0c01140 (2020). 

  39. R. P. Buck and E. Lindner, Recommendations for nomenclature of ion-selective electrodes (IUPAC recommendations 1994), Pure Appl. Chem., 66, 2527-2536 (1994). 

  40. J. M. Pingarron, J. Labuda, J. Barek, C. M. A. Brett, M. F. Camoes, M. Fojta, and D. B. Hibbert, Terminology of electrochemical methods of analysis (IUPAC recommendations 2019), Pure Appl. Chem., 92, 641-694 (2020). 

  41. H. Noby, A. H. El-Shazly, M. F. Elkady, and M. Ohshima, Novel preparation of self-assembled HCl-doped polyaniline nanotubes using compressed $CO_2$ -assisted polymerization, Polymer, 156, 71-75 (2018). 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로