$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] 경골 파혈산동탕(破血散疼湯)이 골절 생쥐의 골 유합에 미치는 영향
Effect of Pahyeolsandong-tang (Poxiesanteng-tang) in Tibia Fracture-induced Mice 원문보기

Journal of Korean Medicine Rehabilitation : JKMR = 한방재활의학과학회지, v.30 no.4, 2020년, pp.1 - 16  

신우석 (상지대학교 대학원) ,  (상지대학교 한의과대학 약리학교실) ,  차윤엽 (상지대학교 부속 한방병원 한방재활의학과)

Abstract AI-Helper 아이콘AI-Helper

Objectives The main purpose of this study was to evaluate the bone healing effect of Pahyeolsandong-tang (PHT)(Poxiesanteng-tang) extract in tibia fracture-induced mice. Methods PHT was extracted using a solution of 35% ethanol in 60℃ for 8 hours. Mice were randomly divided into 4 groups (nor...

주제어

질의응답

핵심어 질문 논문에서 추출한 답변
골절이란 무엇인가? 골절이란 뼈의 연속성이 완전하게 또는 불완전하게 소실된 상태를 말하며 골조직 뿐 아니라 피부, 피하조직, 근육, 혈관, 신경 등의 손상이 같이 나타날 수 있다1). 골절은 흔한 손상의 하나로 대개는 교통사고, 폭력, 낙상, 스포츠 손상과 같은 외상에 의해 발생하지만 골다공증과 같이 비외상성으로 발생하는 경우도 있다.
골절의 일반적인 증상은 무엇이 있는가? 골절은 흔한 손상의 하나로 대개는 교통사고, 폭력, 낙상, 스포츠 손상과 같은 외상에 의해 발생하지만 골다공증과 같이 비외상성으로 발생하는 경우도 있다. 골절의 일반적인 증상으로는 통증 및 압통, 골절단의 출혈, 연부조직 손상 등으로 인한 부종, 각종 기능장애, 구조 변형, 신경과 혈관의 손상 등이 나타날 수 있다2).
골절의 치유과정으로 염증기, 복원기, 재형성기는 각각 어떤 특징을 가지는가? 염증기에는 혈종(hematoma)이 형성되고, 염증반응이 일어나면서 골형성 및 신생 혈관 형성을 위한 연쇄 반응이 나타나기 시작한다28). 복원기에는 혈종의 기질화 (organization)가 나타나게 되며 골세포 및 가골 형성과 관련된 세포들의 증식과 분화가 나타난다29). 초기에 혈관이 없는 연성 가골(soft callus)이 형성되며, 점차 연성 가골에 신생 혈관이 형성되면서 연골내 골화 작용이 일어난다30). 이 시기를 거치면서 연성 가골은 경성 가골(hard callus)이 되고 조골세포가 작용하여 유골 및 직골 등이 만들어진다. 재형성기는 가골이 점차 무기화된 골 조직으로 바뀌고 골수강을 재형성하는 시기이다22). 파골세포에 의해 불필요한 가골 및 골조직 등이 흡수된 다음 조골세포에 의해 성숙한 층판골로 대치되어 막내 골화가 이루어지면서 골 유합을 이루게 된다29).
질의응답 정보가 도움이 되었나요?

참고문헌 (52)

  1. The Society of Korean Medicine Rehabilitation. Korean rehabilitation medicine. 4th ed. Paju:Koonja Publishing. 2015:206-10. 

  2. The Korean Orthopaedic Association. Orthopaedics. 7th ed. Seoul:ChoiSin medical Publishing Co. 2013:87, 94-5, 1161-2, 1385-94. 

  3. Ji SY. Bibliographic study on method of treating the diseases inside the body applied to fracture. J Korean Med Ophthalmol Otolaryngol Dermatol. 1995;8(1);113-29. 

  4. Wang D. Oedaebiyo. 1st ed. Seoul:Sungbosa. 1975: 749-50. 

  5. Heo Joon. Donguibogam. 1st ed. Seoul:Bubin Publishing Co. 2012:785, 1575, 1582. 

  6. Jo G. Seongjechongrok. 1st ed. Seoul:Yeogang Publishing Co. 1987:460-4. 

  7. Jin H, Wang B, Li J, Xie W, Mao Q, Li S, Dong F, Sun Y, Ke HZ, Babij P, Tong P, Chen D. Anti-DKK1 antibody promotes bone fracture healing through activation of $\beta$ -catenin signaling. Bone. 2015;71(1):63-75. 

  8. Sharma N, Arora S, Madan J. Nefopam hydrochloride loaded microspheres for post-operative pain management: synthesis, physicochemical characterization and in-vivo evaluation. Artif Cells Nanomed Biotechnol. 2018;46:138-46. 

  9. Bonnarens F, Einhorn TA. Production of a standard closed fracture in laboratory animal bone. J Orthop Res. 1984;2(1):97-101. 

  10. Frost HM. The biology of fracture healing. An overview for clinicians. Part I. Clin Orthop. 1989;(248):283-93. 

  11. Park SG, Shon OJ. Impaired bone healing metabolic and mechanical causes. J Korean Fract Soc. 2017;30(1):40-51. 

  12. Son WT, Song TW, Oh MS. Healing effect of Soongiwhalhyultang extract on tibia fractured rats. J Korean Med Rehabil. 1999;9(2):350-62. 

  13. Keum DH, Kim SS. Healing Effect of Bokwonhwalhyul-tang on tibia fractured rats. The Journal of the Korea Institute of Oriental Medical Informatics. 2002;8(1):46-66. 

  14. Hang TG, Oh MS, Song TW, Kim KS. Helling effect of Sintongchugoetang Water Extract on Tibia Fractured rats. Daejeon University, Institute of Korean Medicine. 1999;8(1):727-38. 

  15. Jung IM. Effects of Dangkwisoo-san(dangguixu-san) and native copper on TGF- $TGF{\beta}I$ expression in fractured rats [dissertation]. Naju (KR): Dongshin University; 2007. 

  16. Lee HG, Oh MS. Effects of Jeopgolsan (JGS) extract on fracture healing. J Korean Med Rehabil. 2018;28(1):1-17. 

  17. Ha HJ, Oh MS. Experimental study of Dohongsamul-tang (Taohongsiwu-tang) on fracture healing. J Korean Med Rehabil. 2020;30(2):47-66. 

  18. Lee SH. Affirmative effect of Hwaweo-jeon(Huayu-jian) in osteoblast cells and tibia fracture-induced mice [dissertation]. Wonju(KR):Sangji University; 2020. 

  19. Ryum YH, Oh MS, Song TW. Helling effect of Gamigungguitang and GamigungguitangGaNokyong water extract on tibia fractured rats. Daejeon University, Institute of Korean Medicine. 1999;8(1):675-87. 

  20. Li YC, Oh MS. Effects of Joaguihwan (JGH) extract on changes of anti-oxidation, anti-inflammatory in RAW 264.7 cells and on factors related with bone metabolism in skull fractured rat. J Korean Med Rehabil. 2016;26(3):31-49. 

  21. Kim MK. An experimental study of Cheong-A-Won on factors related with bony union in femur fractured mice [dissertation]. Daejeon (KR):Daejeon University; 2018. 

  22. Park JO, Oh MS. The healing effect of Jinmu-tang (Zhenwu-tang) in femur fractured rats. J Korean Med Rehabil. 2020;30(2):19-35. 

  23. Keum DH, Kim SS. Healing effect of pyrite on tibia fractured rats. J Korean Med Rehabil. 2002;12(2):61-90. 

  24. Shin KM, Jung CY, Hwan MS, Lee SD, Kim KH, Kim KS. Effects of administration of pyritum on fracture healing in mice. Journal of Acupuncture Research. 2009;26(5):65-75. 

  25. Union of College of Korean Traditional Medicine. Phytology (Herbal medicine). Seoul:Yeonglimsa. 2004:473-4. 

  26. Kejian L. Leech treatment of acute ischemic stroke systematic review of randomized controlled trials. Mod J Integr Tradit Chin West Med. 2006;15(17):13-5. 

  27. Lee JY, Kim EK, Oh HA, Lee HS, Sohn Y, Jung HS, Kim YB, Park SK, Sohn NW. Effect of Whitmania pigra whitman on the allergic inflammatory response. J Korean Orient Med. 2008; 29(2):81-95. 

  28. Oryan A, Monazzah S, Bigham-Sadegh A. Bone injury and fracture healing biology. Biomed Environ Sci. 2015;28:57-71. 

  29. Ai-Aql ZS, Alagl AS, Graves DT, Gerstenfeld LC, Einhorn TA. Molecular mechanisms controlling bone formation during fracture healing and distraction osteogenesis. J Dent Res, 2008;87:107-18. 

  30. Marsell R, Einhorn TA. The biology of fracture healing. Injury. 2011;42:551-5. 

  31. Einhorn TA. The science of fracture healing. J Orthop Trauma. 2005;19(10 Suppl):S4-S6. 

  32. Isaksson H, Grongroft I, Wilson W, Donkelaar CC, Rietbergen B, Tami A, Huiskes R, Ito K. Remodeling of fracture callus in mice is consistent with mechanical. J Orthop Res. 2009;27(5):664-72. 

  33. Magnusson P, Larsson L, Magnusson M, Davie MW, Sharp CA. Isoforms of bone alkaline phosphatase: characterization and origin in human trabecular and cortical bone. J Bone Miner Res. 1999;14(11):1926-33. 

  34. Allen MJ. Biochemical markers of bone metabolism in animals: uses and limitations. Veterinary Clinical Pathology. 2003;32(3):101-13. 

  35. Seibel MJ. Biochemical markers of bone turnover Part I: biochemistry and variability. Clin Biochem Rev. 2005;26:97-122. 

  36. Yang JM, Sung DM, Kim EG, Lee SD. Effects of long-term intake of Korean medicine on gynecology. J Korean Med. 2020;41(1):84-92. 

  37. Kim DW, Oh SH, Lee EJ, Kim HK, An IH, Kim SM, Gwen MH, Lee SM, Huh JH. The change of renal function in patient with long term herb medication by frequently prescribed formular. KOMS. 1994;15(1):410-8. 

  38. Yoshikawa M, Ogata A. Expression of the osteoblastic marker in human alveolar bone cells spheroid. J Jpn Soc Periodontol. 2006;48:276-84. 

  39. Lee HS, Lee CS, Jang JS, Lee JD, Um SM. Changes of serum alkaline phosphatase and osteocalcin during fracture healing. J Korean Orthop Assoc. 2002;37(3):411-5. 

  40. Komori T. Regulation of bone development and extracellular matrix protein genes by Runx2. Cell and Tissue Research. 2009;339(1):189-95. 

  41. Pierre JM. Transcription factors controlling osteoblastogenesis. Archives of Biochemistry and Biophysics. 2008;473(2):98-105. 

  42. Nishio Y, Dong Y, Paris M, O'Keefe RJ, Schwarz EM, Drissi H. Runx2-mediated regulation of the zinc finger osterix/Sp7 gene. Gene. 2006;372:62-70. 

  43. Olsen BR, Reginato AM, Wang W. Bone development. Annu Rev Cell Dev Biol. 2000;16:191-220. 

  44. Kim OH, Nishimura K, Cho TJ. Imaging diagnosis of skeletal dysplasias and malformation syndromes. Seoul: Ryomoongak. 2019:15-7. 

  45. Cha BH, Kim JH, Kang SW, Do HJ, Jang JW, Choi YR, Park HS, Kim BS, Lee SH. Cartilage tissue formation from dedifferentiated chondrocytes by codelivery of BMP-2 and SOX-9 genes encoding bicistronic vector. Cell Transplant. 2013;22(9):1519-28. 

  46. Bi W, Deng JM, Zhang Z, Behringer RR, Crombrugghe B. Sox9 is required for cartilage formation. Nature Genetics. 1999;22(1):85-94. 

  47. Sobacchi C, Menale C, Villa A. The RANKL-RANK axis: a bone to thymus round trip. Front Immunol. 2019;10:629. 

  48. Dougall WC, Glaccum M, Charrier K, Rohrbach K, Brasel K, De Smedt T, Daro E, Smith J, Tometsko ME, Maliszewski CR, Armstrong A, Shen V, Bain S, Cosman D, Anderson D, Morrissey PJ, Peschon JJ, Schuh J. RANK is essential for osteoclast and lymph node development. Genes Dev. 1999;13:2412-24. 

  49. Siggelkow H, Eidner T, Lehmann G, Viereck V, Raddatz D, Munzel U, Hein G, Hufner M. Cytokines, osteoprotegerin, and RANKL in vitro and histomorphometric indices of bone turnover in patients with different bone diseases. J Bone Miner Res. 2003;18:529-38. 

  50. Yamamoto M, Murakami T, Nishikawa M, Tsuda E, Mochizuki S, Higashio K, Akatsu T, Motoyoshi K, Nagata N. Hypocalcemic effect of osteoclastogenesis inhibitory factor/osteoprotegerin in the thyroparathyroidectomized rat. Endocrinology. 1998; 139:4012-5. 

  51. Aguila HL, Rowe DW. Skeletal development, bone remodeling, and hematopoiesis. Immunological Review. 2005;208(1):7-18. 

  52. Mizuno A, Amizuka N, Irie K, Murakami A, Fujise N, Kanno T, Sato Y, Nakagawa N, Yasuda H, Mochizuki S, Gomibuchi T, Yano K, Shima N, Washida N, Tsuda E, Morinaga T, Higashio K, Ozawa H. Severe osteoporosis in mice lacking osteoclastogenesis inhibitory factor/osteoprotegerin. Biochem Biophys Res Commun. 1998;247:610-5. 

저자의 다른 논문 :

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로