$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

A cavitation performance prediction method for pumps PART1-Proposal and feasibility 원문보기 논문타임라인

Nuclear engineering and technology : an international journal of the Korean Nuclear Society, v.52 no.11, 2020년, pp.2471 - 2478  

Yun, Long (National Research Center of Pumps, Jiangsu University) ,  Rongsheng, Zhu (National Research Center of Pumps, Jiangsu University) ,  Dezhong, Wang (School of Mechanical Engineering, Shanghai Jiaotong University)

Abstract AI-Helper 아이콘AI-Helper

Pumps are essential machinery in the various industries. With the development of high-speed and large-scale pumps, especially high energy density, high requirements have been imposed on the vibration and noise performance of pumps, and cavitation is an important source of vibration and noise excitat...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • In order to solve the problem of cavitation fast prediction, this paper focus research on cavitation prediction method based on pressure isosurface in single-phase.
  • The method and theory have not yet been established, and an accurate prediction method is still need to be verified. This paper will focus the cavitation characteristics of the model pump to find a rapid method to predict the cavitation method.
  • All these features are only related to the pump impeller. This research is based on numerical simulation of pump with water medium. The relationship between the pressure isosurface of the impeller and the NPSHr is established.
본문요약 정보가 도움이 되었나요?

참고문헌 (27)

  1. J. Katz, Cavitation phenomena within regions of flow separation, J. Fluid Mech. 140 (140) (1984) 397-436. 

  2. K.R. Laberteaux, S.L. Ceccio, V.J. Mastrocola, J.L. Lowrance, High speed digital imaging of cavitating vortices, Exp. Fluid 24 (5) (1998) 489-498. 

  3. H. Liu, D. Liu, Y. Wang, H. DU, H. Xu, Numerical research status and prospects of cavitating flow in a pump, Fluid Mach. 9 (2011), 008. 

  4. I. Bilus, A. Predin, Numerical and experimental approach to cavitation surge obstruction in water pump, Int. J. Numer. Methods Heat Fluid Flow 19 (7) (2013) 818-834, 17. 

  5. H. Ding, F.C. Visser, Y. Jiang, M. Furmanczyk, Demonstration and validation of a 3D CFD simulation tool predicting pump performance and cavitation for industrial applications, J. Fluid Eng. 133 (1) (2011), 011101. 

  6. K. Fanyu, Z. Hongli, Z. Xufeng, W. Zhiqiang, Design on variable-pitch inducer based on numerical simulation for cavitation flow, J. . Drain.-Irrigat.Machinery.Eng. 1 (2010), 002. 

  7. Z. Yang, F. Wang, Z. Liu, Z. Zhang, Prediction of cavitation performance of axial-flow pump based on CFD, J. . Drain.Irrigat.Machinery.Eng. 29 (1) (2011) 11-15. 

  8. W. Yong, L.H. Lin, Y.S. Qi, T.M. Gao, W. Kai, Prediction research on cavitation performance for centrifugal pumps, in: IEEE International Conference on Intelligent Computing and Intelligent Systems, 2009, pp. 137-140. 

  9. B. Pouffary, R. Fortes-Patella, J.L. Reboud, P.A. Lambert, Numerical simulation of 3D cavitating flows: analysis of cavitation head drop in turbomachinery, in: ASME Fluids Engineering Division Summer Meeting and Exhibition, Fifth International Symposium on Pumping Machinery, June 19-23, 2005, pp. 1431-1439. 

  10. E. Vahid, A. Pooria, H. Kazem, An improved progressive preconditioning method for steady non-cavitating and sheet-cavitating flows, Int. J. Numer. Methods Fluid. 68 (2) (2011) 210-232. 

  11. O. Coutier-Delgosha, R. Fortes-Patella, J.L. Reboud, N. Hakimi, C. Hirsch, Stability of preconditioned NaviereStokes equations associated with a cavitation model, Comput. Fluid 34 (3) (2005) 319-349. 

  12. H.S. Gunter, S. Jurgen, Physical and numerical modeling of unsteady cavitation dynamics, in: ICMF-2001, International Conference on Multiphase Flow, 2001. 

  13. R.F. Kunz, et al., A preconditioned NaviereStokes method for two-phase flows with application to cavitation prediction, Comput. Fluid 29 (8) (2000) 849-875. 

  14. C.L. Merkle, J. Feng, P.E.O. Buelow, Computational modeling of the dynamics of sheet cavitation, 1998. 

  15. A.K. Singhal, M.M. Athavale, H. Li, Y. Jiang, Mathematical basis and validation of the full cavitation model, J. Fluid Eng. 124 (3) (2002) 617-624. 

  16. Y. Song, S. Cao, Cavitation model with non-condensable gas effect and its numerical simulation, J. . Drain.Irrigat.Machinery.Eng. 30 (1) (2012) 1-5. 

  17. D. Li, Y. Qin, Z. Zuo, H. Wang, S. Liu, X. Wei, Numerical simulation on pump transient characteristic in a model pump turbine, J. Fluid Eng. 141 (11) (2019) 111101. 

  18. N. Zhang, X. Liu, B. Gao, X. Wang, B. Xia, Effects of modifying the blade trailing edge profile on unsteady pressure pulsations and flow structures in a centrifugal pump, Int. J. Heat Fluid Flow 75 (2019) 227-238. 

  19. N. Zhang, X. Liu, B. Gao, B. Xia, DDES analysis of the unsteady wake flow and its evolution of a centrifugal pump, Renew. Energy 141 (2019) 570-582. 

  20. D. Zhang, L. Shi, W. Shi, R. Zhao, H. Wang, B.P.M.V. Esch, Numerical analysis of unsteady tip leakage vortex cavitation cloud and unstable suction-side-perpendicular cavitating vortices in an axial flow pump, Int. J. Multiphas. Flow 77 (2015) 244-259. 

  21. D. Zhang, L. Shi, R. Zhao, W. Shi, Q. Pan, B.P.M.B.V. Esch, Study on unsteady tip leakage vortex cavitation in an axial-flow pump using an improved filter-based model, J. Mech. Sci. Technol. 31 (2) (2017) 659-667. 

  22. D. Zhang, W. Shi, B.P.M.V. Esch, L. Shi, M. Dubuisson, Numerical and experimental investigation of tip leakage vortex trajectory and dynamics in an axial flow pump, Comput. Fluid 112 (1) (2015) 61-71. 

  23. Z. Pan, S. Yuan, Fundamentals of Cavitation in Pumps, Jiangsu University Press, Zhenjiang, 2013 (In Chinese). 

  24. C.E. Brennen, Hydrodynamics of Pumps, Cambridge University Press, 2011. 

  25. I.S. Pearsall, Design of pump impellers for optimum cavitation performance, Proc. Inst. Mech. Eng. 187 (1973) 667-678. 

  26. T. Rus, M. Dular, B. Sirok, M. Hocevar, I. Kern, An investigation of the relationship between acoustic emission, vibration, noise, and cavitation structures on a kaplan turbine, J. Fluid Eng. 129 (9) (2007) 1112. 

  27. J.-P. Franc, J.-M. Michel, Fundamentals of Cavitation, Springer science & Business media, 2006. 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로