$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

항공기 결빙 보호장치의 기술 현황 및 전망
Current Status and Prospect of Aircraft Ice Protection Systems 원문보기

한국항공우주학회지 = Journal of the Korean Society for Aeronautical & Space Sciences, v.48 no.11, 2020년, pp.911 - 925  

이재원 (Korea Aerospace Industries, LTD.) ,  조민영 (School of Mechanical and Aerospace Engineering, Gyeongsang National University) ,  김용환 (Department of Aerospace Engineering, Seoul National University) ,  이관중 (Department of Aerospace Engineering, Seoul National University) ,  명노신 (School of Mechanical and Aerospace Engineering, Gyeongsang National University)

초록
AI-Helper 아이콘AI-Helper

항공기 결빙 보호장치는 항공기의 Window Shield 및 Engine Inlet, Wing 등에 적용되어 운용 중 발생할 수 있는 항공기와 센서의 표면 결빙으로 부터 항공기를 보호한다. 표면에 증식된 결빙은 항공기의 조종 안정성을 저하시키고 대기자료 프로브의 오작동을 일으킴으로써 심각한 사고의 원인이 되기도 하는데, 이를 방지하기 위하여 다양한 방식의 결빙 보호장치가 개발되었다. Electrothermal 방식은 비교적 간단한 구조이고 에너지 효율을 높이는 데 유리하여 가장 많이 사용되는 항공기 결빙 보호장치로 자리매김하고 있다. 본 리뷰 논문에서는 대표적인 결빙 보호장치인 Hot-air 및 Electro-thermal 방식을 집중적으로 분석하였고, 기술 현황과 적용 사례를 바탕으로 결빙 보호장치의 전망에 대해 고찰하였다.

Abstract AI-Helper 아이콘AI-Helper

Aircraft ice protection systems are applied to the window shield, engine inlet, and wings to protect the aircraft from ice that may form on the surfaces of aircraft and sensors during operation. Icing on the aircraft can cause serious accidents by degrading the flight stability of the aircraft and b...

주제어

질의응답

핵심어 질문 논문에서 추출한 답변
항공기 결빙은 어느 경우에 발생하는가? 항공기 결빙은 외부 공기의 온도가 빙점 이하이고 수분 함유량이 높은 층운 및 적운 등의 구름대를 비행할 때 항공기의 외부 표면에 물방울이 부착되어 발생한다. 항공기의 결빙 보호장치(Ice Protection System; IPS)는 축적된 얼음으로부터 항공기의 날개 및 엔진 흡입구 등을 보호하기 위해 설계된다.
결빙 보호장치는 어떻게 구분할 수 있는가? 결빙 보호장치는 비행 초기 단계부터 결빙을 방지하는 방빙장치(Anti-icing System)와 결빙증식을 센서를 통해 감지했을 때 제거하는 제빙장치(De-icing System)로 구분할 수 있다[13,14]. 방빙의 경우 주로 전기 열선과 엔진의 뜨거운 공기를 활용하며, 제빙은 일시적인 충격이나 외부 형상을 부풀려 얼음이 떨어져나가게 하는 등 구조적인 측면을 이용한다.
결빙 보호장치의 검증방법으로는 어떠한 것이 있는가? 결빙 보호장치는 적절한 실험과정을 거쳐 검증되는데, 현재까지 알려진 검증방법은 세 가지가 있다. 1940년대부터 본격적으로 시작된 결빙 풍동시험과 비행시험이 대표적이며, 1970년대 후반부터 발전한 컴퓨터 시뮬레이션 기법이 있다. 항공기 결빙 증식과 결빙 보호장치의 성능을 검증하기 위해 1970년대 후반부터 약 30년이 넘는 기간 동안 컴퓨터 시뮬레이션을 활용해왔다.
질의응답 정보가 도움이 되었나요?

참고문헌 (83)

  1. Jung, S. K., Lee, C. H., Shin, S. M., Myong, R. S., Cho, T. H., Jeong, H. H. and Jung, J. H., "An Investigation of Icing Effects on the Aerodynamic Characteristics of KC-100 Aircraft," Journal of the Korean Society for Aeronautical and Space Sciences, Vol. 38, No. 6, 2010, pp. 530-536. 

  2. Raj, L. P., Lee, J. W. and Myong, R. S., "Ice Accretion and Aerodynamic Effects on a Multi-element Airfoil under SLD Icing Conditions," Aerospace Science and Technology, Vol. 85, 2019, pp. 320-333. 

  3. Mikkelsen, K., Mcknight, R., Ranaudo, R. and Perkins, JR. P., "Icing Flight Research-Aerodynamic Effects of Ice and Ice Shape Documentation with Stereo Photography," AIAA Paper 85-0468, 1985. 

  4. Potapczuk, M. G., Al-Khalil, K. M. and Velazquez, M. T., "Ice Accretion and Performance Degradation Calculations with LEWICE/NS," AIAA Paper 93-0173, 1993. 

  5. Bragg, M. B., Hutchison, T., Merret, J., Oltman, R. and Pokhariyal, D., "Effect of Ice Accretion on Aircraft Flight Dynamics," AIAA Paper 2000-0360, 2000. 

  6. Son, C., Oh, S. and Yee, K., "Ice Accretion on Helicopter Fuselage Considering Rotor-Wake Effects," Journal of Aircraft, Vol. 54, No. 2, 2017, pp. 500-518. 

  7. Son, C. and Yee, K., "Procedure for Determining Operation Limits of High-Altitude Long-Endurance Aircraft Under Icing Conditions," Journal of Aircraft, Vol. 55, No. 1, 2018, pp. 294-309. 

  8. Weener, E., Lessons from Icing Accidents and Incidents, NTSB Experimental Aircraft Association, 2011. 

  9. Gent, R. W., Dart, N. P. and Cansdale, J. T., "Aircraft Iicng," Philosophical Transactions of the Royal Society A, Vol. 358, No. 1776, 2000, pp. 2873-2911. 

  10. Raj, L. P. and Myong, R. S., "Computational Analysis of an Electro-Thermal Ice Protection System in Atmospheric Icing Conditions," Journal of Computational Fluids Engineering, Vol. 21, No. 1, 2016, pp. 1-9. 

  11. Raj, L. P., Yee, K. and Myong, R. S., "Sensitivity of Ice Accretion and Aerodynamic Performance Degradation to Critical Physical and Modeling Parameters Affecting Airfoil Icing," Aerospace Science and Technology, Vol. 98, 2020, 105659. 

  12. Gent, R. W., "Ice Detection and Protection," Encyclopedia of Aerospace Engineering, 2010. 

  13. Landsberg, B., Safety Advisor: Aircraft Icing, AOPA Air Safety Foundation, 2008. 

  14. Landsberg, B., Safety Advisor: Aircraft Deicing and Anti-icing Equipment, AOPA Air Safety Foundation, 2004. 

  15. Calay, R. K., Holdo, A. E. and Mayman, P., "Experimental Simulation of Runback Ice," Journal of Aircraft, Vol. 34, No. 2, 1997, pp. 206-212. 

  16. Filho, A. F., "Aircraft Ice Protection System Certification Plan Development," Engineering Research: Technical Reports, Vol. 5, No. 6, 2015, Article 5. 

  17. Albright, A. E., Kohlman, D. L., Schweikhard, W. G. and Evanich, P., "Evaluation of a Pneumatic Boot Deicing System on a General Aviation Wing Model," NASA-TM- 82363, 1981. 

  18. English, P., "Resolving the Conflicting Requirements of Aircraft Lightning Protection and In-Flight Ice Protection," 2015 International Conference on Lightning and Static Electricity (ICOLSE 2015), 2015. 

  19. Pellissier, M. P. C., Habashi, W. G. and Pueyo, A., "Design Optimization of Hot-air Anti-icing Systems," AIAA Paper 2010-1238, 2010. 

  20. Addy, H. E., Oleskiw, M., Broeren, A. P. and Orchard, D., "A Study of the Effects of Altitude on Thermal Ice Protection System Performance," AIAA Paper 2013-2934, 2013. 

  21. Bu, X., Lin, G., Yu, J., Shen, X. and Hou, P., "Numerical Analysis of a Swept Wing Hot Air Ice Protection System," Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, Vol. 228, 2013, pp. 1507-1518. 

  22. Domingos, R., Papadakis, M. and Zamora, A., "Computational Methodology for Bleed Air Ice Protection System Parametric Analysis," AIAA Paper 2010-7834, 2012. 

  23. Lee, J., Rigby, D., Wright, W. and Choo, Y., "Analysis of Thermal Ice Protection System (TIPS) with Piccolo Tube Using State-of-the-Art Software," AIAA Paper 2006-1011, 2012. 

  24. Morency, F., Brahimi, M., Tezok, F. and Paraschivoiu, I., "Hot Air Anti-icing System Modelization in the Ice Prediction Code CANICE," AIAA Paper 98-0192, 2013. 

  25. Papadakis, M. and Wong, S. H., "Parametric Investigation of a Bleed Air Ice Protection System," AIAA Paper 2006-1013, 2012. 

  26. Papadakis, M., Wong, S. H., Yeong, H. W. and Wong, S. C., Vu, G. T., "Experimental Investigation of a Bleed Air Ice Protection System," SAE Technical Paper 2007-01-3313, 2007. 

  27. Papadakis, M., Wong, S. H., Yeong, H. W. and Wong, S. C., "Icing Tests of a Wing Model with a Hot-Air Ice Protection System," AIAA Paper 2010-7833, 2012. 

  28. Wang, H., Tran, P. and Habashi, W. G., "Anti-Icing Simulation in Wet Air of a Piccolo System using FENSAP-ICE," SAE Technical Paper 2007-01-3357, 2007. 

  29. Wong, S. H., Papadakis, M. and Zamora, A., "Computational Investigation of a Bleed Air Ice Protection System," AIAA Paper 2009-3966, 2009. 

  30. Habashi, W. G., "Recent Progress In Unifying CFD and In-Flight Icing Simulation," Proceedings of ICFD 2010 ICFD10-EG-30I11, 2010. 

  31. Al-Khalil, K. M., Horvath, C., Miller, D. R. and Wright, W. B., "Validation of NASA thermal ice protection computer codes. III - The validation of ANTICE," AIAA Paper 97-0051, 1997. 

  32. Jung, K. Y., Ahn, G. B., Myong, R. S., Cho, T. H., Jung, S. K. and Shin, H. B., "Computational Prediction of Ice Accretion around a Rotorcraft Air Intake," Journal of Computational Fluids Engineering, Vol. 17, No. 2, 2012, pp. 100-106. 

  33. Ahn, G. B., Jung, K. Y., Jung, S. K., Shin, H. B. and Myong, R. S., "Investigation of the Performance of Anti-Icing System of a Rotorcraft Engine Air Intake," Journal of the Korean Society for Aeronautical and Space Sciences, Vol. 41, No. 3, 2013, 1225-1348. 

  34. Ahn, G. B., Jung, K. Y. and Myong, R. S., "Numerical and Experimental Investigation of Ice Accretion on Rotorcraft Engine Air Intake," Journal of Aircraft, Vol. 52, No. 3, 2015, pp. 903-909. 

  35. Jung, S., Raj, L. P., Rahimi, A., Jeong, H. and Myong, R. S., "Performance Evaluation of Electrothermal Anti-icing Systems for a Rotorcraft Engine Air Intake Using a Meta Model," Aerospace Science and Technology, Vol. 106, 2020, 106174. 

  36. Kohlman, D. L., Schweikhard, W. G. and Evanich, P., "Icing-Tunnel Tests of a Glycol-Exuding, Porous Leading-Edge Ice Protection System on a General Aviation Airfoil," AIAA Paper 81-0405, 1981. 

  37. Kohlman, D. L. and Schweikhard, W. G., "Icing-Tunnel Tests of a Glycol-Exuding, Porous Leading-Edge Ice Protection System," Journal of Aircraft, Vol. 19, No. 8, 1982, pp. 647-654. 

  38. Albright, A. E. and Kohlman, D. L., "An Improved Method of Predicting Anti-icing Flow Rates for a Fluid Ice Protection System," AIAA Paper 84-0023, 1984. 

  39. Albright, A. E., "A Summary of NASA's Research on the Fluid Ice Protection System," AIAA Paper 85-0467, 1985. 

  40. Martin, C. A. and Putt, J. C., "Advanced Pneumatic Impulse Ice Protection System (PIIP) for Aircraft," Journal of Aircraft, Vol. 29, No. 4, 1992, pp. 714-716. 

  41. Shin, J. and Bond, T. H., "Results of a Low Power Ice Protection System Test and a New Method of Imaging Data Analysis," NASA Technical Memorandum, 1992. 

  42. Irajizad, P., Al-Bayati, A., Eslami, B., Shafquat, T., Nazari, M., Jafari, P., Kashyap, V., Masou.di, A., Araya, D. and Ghasemi, H., "Stress-Localized Durable Icephobic Surfaces," Materials Horizons, 2019. 

  43. Gonzales, J. and Sakaue, H., "Creation of an Icephobic Coating using Graphite Powder and PTFE Nanoparticles," SAE Technical Paper 2019-01-1979, 2019. 

  44. Ma, L., Zhang, Z., Liu, Y. and Hu, H., "An Experimental Study to Evaluate the Droplet Impinging Erosion Characteristics of an Icephobic, Elastic Soft Surface," SAE Technical Paper 2019-01-1997, 2019. 

  45. Orchard, D., Chevrette, G., Maillard, D. and Khoun, L., "Testing of Elastomer Icephobic Coatings in the AIWT: Lessons Learned," SAE Technical Paper 2019-01-1994, 2019. 

  46. Veedu, V., Thapa, S. and Arumugam, G.K., "Advanced Nanocomposite Low Adhesion Icephobic Coating for Aerospace Applications," SAE Technical Paper 2019-01-1996, 2019. 

  47. Tian, L., Liu, Y., Li, L. and Hu, H., "An Experimental Study to Evaluate Hydro-/Ice- Phobic Coatings for Icing Mitigation over Rotating Aero-engine Fan Blades," SAE Technical Paper 2019-01-1980, 2019. 

  48. Bond, T. H., Shin, J. and Mesander, G. A., "Advanced Ice Protection Systems Test in the NASA Lewis Icing Research Tunnel," NASA Technical Memorandum, 1991. 

  49. Al-Khalil, K. M., Ferguson, T. W. and Phillips, D. M., "A Hybrid Anti-Icing Ice Protection System," AIAA Paper 97-0302, 1997. 

  50. Al-Khalil, K., Ferguson, T. and Phillips, D., "A Hybrid Anti-icing Ice Protection System," AIAA Paper 97-0302, 1997. 

  51. Gerardi, J. J., Ingram, R. B. and Catarella, R. A., "A Shape Memory Alloy Based De-Icing System for Aircraft," AIAA Paper 95-0454, 1995. 

  52. Myose, R. Y., Horn, W. J., Hwang, Y., Herrero, J., Huynh, C. and Boudraa, T., "Composite Laminates with Shape Memory Alloys for Leading Edge Deicing," SAE Technical Paper 1999-01-1585, 1999. 

  53. Gerardi, J. J., Ingram, R. B. and Caterella, R., "Wind-tunnel Test Results for a Shape Memory Alloy Based De-icing System for Aircraft," American Helicopter Society International Icing Symposium Proceedings, Montreal, 1995. 

  54. Jackson, D. G. and Goldberg, J. I., "Ice Detection Systems: A Historical Perspective," SAE 2007-01-3325, 2007. 

  55. SAE International, ""Minimum Operational Performance Specification for In-Flight Icing Detection Systems," EUROCAE ED-103 & SAE AS5498, 2009. 

  56. Primary and Advisory Ice Detection Systems, Goodrich Sensor Systems Brochure, 2002. 

  57. Schlegl, T., Moser, M., Loss, T. and Unger, T., "A Smart Icing Detection System for Any Location on the Outer Aircraft Surface," SAE Technical Paper 2019-01-1931, 2019. 

  58. Davison, C., Chalmers, J. and Fuleki, D., "NRC Particle Detection Probe: Results and Analysis from Ground and Flight Tests," SAE Technical Paper 2019-01-1933, 2019. 

  59. Anderson, K. J. and Ray, M. D., "SLD and Ice Crystal Discrimination with the Optical Ice Detector," SAE Technical Paper 2019-01-1934, 2019. 

  60. Homola, M. C., Nicklasson, P. J. and Sundsbo, P. A., "Ice Sensors for Wind Turbines," Cold Regions Science and Technology, Vol. 46, No. 2, 2006, pp. 125-131. 

  61. Kazula, S. and Hoschler, K., "Ice Detection and Protection Systems for Circular Variable Nacelle Inlet Concepts," CEAS Aeronautical Journal, Vol. 11, 2020, pp. 229-248. 

  62. Burick, R. A. and Ryan, R. J., "FAA Certification of the Lockheed Martin C-130J Transport Ice Protection System," AIAA Paper 99-4016, 1999. 

  63. Flemming, R. J., "A History of Ice Protection System Development at Sikorsky Aircraft," SAE Technical Paper 2003-01-2092, 2003. 

  64. Flemming, R. J., "US Army UH-60M Helicopter Main Rotor Ice Protection System," SAE Technical Paper 2007-01-3301, 2007. 

  65. "Rotor Blade Electrothermal Ice Protection Design Considerations," SAE Aerospace Information Report AIR1667A, 2002. 

  66. Flemming, R. J. and Alldridge, P. J., "Sikorsky $S-92A^{(R)}$ and $S-76D^{TM}$ Helicopter Rotor Ice Protection Systems," SAE Technical Paper 2007-01-3299, 2007. 

  67. Bernstein, B. C. and Flemming, R. J., "Certification of Sikorsky $S-92A^{(R)}$ Helicopter Ice Protection System: Meteorological Aspects of Tanker Tests and Natural Icing Flights," SAE Aircraft and Engine Icing International Conference Paper 2007-01-3299, 2007. 

  68. Choi, J. H., "Significance and Direction of Development of Icing Flight Test of the Surion Helicopter," Aerospace Magazine (in Korean), Vol. 13, No. 1, 2019, pp. 9-20. 

  69. Deka, B. K., Hazarika, A., Kong, K., Kim, D. Y., Park, Y. B. and Park, H. W., "Interfacial Resistive Heating and Mechanical Properties of Graphene Oxide Assisted CuO Nanoparticles in Woven Carbon Fiber/Polyester Composite," Composites: Part A, Vol. 80, 2016, pp. 159-170. 

  70. Kong, K., Cheedarala, R. K., Kim, M., Roh, H. D., Park, Y. B. and Park, H. W., "Electrical Thermal Heating and Piezoresistive Characteristics of Hybrid Cuo-Woven Carbon Fiber/Vinyl Ester Composite Laminates," Composites: Part A, Vol. 85, 2016, pp. 103-112. 

  71. Kong, K., Deka, B. K., Kim, M., Oh, A., Kim, H., Park, Y. B. and Park, H. W., "Interlaminar Resistive Heating Behavior of Woven Carbon Fiber Composite Laminates Modified with ZnO Nanorods," Composites Science and Technology, Vol. 100, 2014, pp. 83-91. 

  72. Kim, M., Kong, K., Kim, N., Park, H. W., Park, O., Park, Y. B., Jung, M., Lee, S. H. and Kim, S. G., "Experimental and Numerical Study of Heating Characteristics of Discontinuous Carbon Fiber-Epoxy Composites," Composites Research, Vol. 26, No. 1, 2013, pp. 72-78. 

  73. Palacios, J., Smith, E. and Rose, J., "Instantaneous Deicing of Freezer Ice via Ultrasonic Actuation," AIAA Journal, Vol. 49, No. 6, 2011, pp. 1158-1167. 

  74. Drew, J., "No Place To Hide," Aviation Week and Space Technology, November 27-December 10, 2017, pp. 50-51 & 56-57. 

  75. Hann, R., "UAV Icing: Ice Accretion Experiments and Validation," SAE Technical Paper 2019-01-2037, 2019. 

  76. Hann, R., Borup, K., Zolich, A., Sorensen, K., Vestad, H., Steinert, M. and Johansen, T., "Experimental Investigations of an Icing Protection System for UAVs," SAE Technical Paper 2019-01-2038, 2019. 

  77. Hann, R., "UAV Icing: Comparison of LEWICE and FENSAP-ICE for Anti-Icing Loads," AIAA Paper 2019-1286, 2019. 

  78. Haulman, D. L., "U.S. Unmanned Aerial Vehicles in Combat, 1991-2003," 2003. URL: https://www.afhra.af.mil/Portals/16/documents/Studies/AFD-070912-042.pdf. 

  79. Liu, Y., Kolbakir, C., Hu, H. and H. Hu, "A Comparison Study on AC-DBD Plasma and Electrical Heating for Aircraft Icing Mitigation," AIAA Paper 2018-0167, 2018. 

  80. Park, J. H. and Myong, R. S., "Atmospheric Icing Effects on the Aerodynamic Characteristics and Performance of Wind Turbine Blade," Journal of the Korean Society for Aeronautical and Space Sciences, Vol. 42, No. 1 2014, pp. 134-143. 

  81. Park, J. H., Jung, K. Y. and Myong, R. S., "Computational Prediction of Icing Effects on Aerodynamic Characteristics of a Wind Turbine Blade," Journal of Computational Fluids Engineering, Vol. 18, No. 3, 2013, pp. 51-59. 

  82. Myong, R. S., "Atmospheric Icing Effects on Aerodynamics of Wind Turbine Blade," Proceedings of the ASME 2013 IMECE2013-64085, 2013. 

  83. Parent, O. and Ilinca, A., "Anti-Icing and De-Icing Techniques for Wind Turbines: Critical Review," Cold Regions Science and Technology, Vol. 65, No. 1, 2011, pp. 88-96. 

저자의 다른 논문 :

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로