$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] 탄소 복합재 기반 전자파 차폐 및 고방열 일체형 필름 연구동향
Research Trends of Carbon Composite Film with Electromagnetic Interference Shielding and High Heat Dissipation 원문보기

마이크로전자 및 패키징 학회지 = Journal of the Microelectronics and Packaging Society, v.28 no.4, 2021년, pp.1 - 10  

박성현 (한국생산기술연구원 탄소경량소재응용연구그룹) ,  김명훈 (한국생산기술연구원 탄소경량소재응용연구그룹) ,  김광석 (한국생산기술연구원 탄소경량소재응용연구그룹)

초록
AI-Helper 아이콘AI-Helper

최근 전자 부품의 소형화, 고집적화가 진행되고 있으며, 소형화된 전자기기는 작은 면적과 얇은 두께로 전자파 간섭 및 발열문제를 해결해야 한다. 그래핀(Graphene) 복합재와 그라파이트(Graphite) 복합재는 가벼우면서도 우수한 전기 전도성과 열전도도로 전자파 차폐와 방열 문제를 해결할 수 있는 소재이다. 최근 합성 기술과 복합재 제조기술이 발전함에 따라 그래핀과 그라파이트 복합재를 다양한 분야에 적용하기 위한 연구들이 진행되고 있으며, 본 연구에서는 그래핀과 그라파이트를 이용하여 전자파 차폐 및 방열 특성을 동시에 가지는 복합재 필름을 제안한 최근 연구를 알아보고자 한다.

Abstract AI-Helper 아이콘AI-Helper

Recently, electronic components are becoming smaller and highly integrated. As a result, electromagnetic interference (EMI) and heat generation problems must be solved simultaneously with a small area and thickness. Graphene composites and graphite composites are lightweight materials that can simul...

Keyword

표/그림 (19)

참고문헌 (47)

  1. T. Sudo, H. Sasaki, N. Masuda and J. L. Drewniak, "Electromagnetic Interference (EMI) of System-on-Package (SOP)", IEEE Trans. Adv. Packag., 27(2), 304-314 (2004). 

  2. C. Zweben, "Advanced Composites And Other Advanced Materials For Electronic Packaging Thermal Management", Proc. International Symposium on Advanced Packaging Materials Processes, Properties and Interfaces (IEEE Cat. No. 01TH8562), IEEE, 360-365 (2001). 

  3. A. L. Moore, L. Shi, "Emerging challenges and materials for thermal management of electronics", Mater. Today, 17(4), 163-174 (2014). 

  4. A. Iqbal, P. Sambyal and C. M. Koo, "2D MXenes for Electromagnetic Shielding: A Review", Adv. Funct. Mater., 30, 2000883 (2020). 

  5. F. M. Oliveira, R. Gusmao, "Recent Advances in the Electromagnetic Interference Shielding of 2D Materials beyond Graphene", ACS Appl. Electron. Mater., 2(10), 3048-3071 (2020). 

  6. S. Geetha, K. K. Satheesh Kumar, C. R. Rao, M. Vijayan and D. C. Trivedi, "EMI Shielding: Methods and Materials-A Review", J. Appl. Polym. Sci., 112(4), 2073-2086 (2009). 

  7. S. S. Sidhu, S. Kumar and A. Batish, "Metal Matrix Composites for Thermal Management: A Review", Crit. Rev. Solid State Mater. Sci., 41(2), 132-157 (2016). 

  8. S. Sankaran, K. Deshmukh, M. B. Ahamed and S. K. Pasha, "Recent Advances in Electromagnetic Interference Shielding Properties of Metal and Carbon Filler Reinforced Flexible Polymer Composites: A Review", Compos. Part A Appl. Sci. Manuf., 114, 49-71 (2018). 

  9. S. S. Pradhan, L. Unnikrishnan, S. Mohanty and S. K. Nayak, "Thermally Conducting Polymer Composites with EMI Shielding: A Review", J. Electron. Mater., 49(3), 1749-1764 (2020). 

  10. M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Heon, L. Hultman, Y. Gogotsi and M. W. Barsoum, "Two-Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2", Adv. Mater., 23, 4248-4253 (2011). 

  11. A. Bhat, S. Anwer, K. S. Bhat, M. I. H. Mohideen, K. Liao and A. Qurashi, "Prospects Challenges and Stability of 2D MXenes for Clean Energy Conversion and Storage Applications", NPJ2D Mater. Appl., 5(1), 1-21 (2021). 

  12. R. Liu, W. Li, "High-Thermal-Stability and High-Thermal-Conductivity Ti 3 C 2 Tx MXene/Poly(vinyl alcohol) (PVA) Composites", ACS Omega, 3, 2609-2617 (2018). 

  13. W. Kong, H. Kum, S. Bae, J. Shim, H. Kim, L. Kong, Y. Meng, K. Wang, C. Kim and J. Kim, "Path Towards Graphene Commercialization from Lab to Market", Nat. Nanotechnol., 14(10), 927-938 (2019). 

  14. G. M. da Costa, C. M. Hussain, "Ethical, Legal, Social and Economics Issues of Graphene", Compr. Anal. Chem., 91, 263 (2020). 

  15. R. A. Reynolds, R. A. Greinke, "Influence of Expansion Volume of Intercalated Graphite on Tensile Properties of Flexible Graphite", Carbon NY, 39(3), 479-481 (2001). 

  16. Y. Leng, J. Gu, W. Cao and T. Y. Zhang, "Influences of Density and Flake Size on the Mechanical Properties of Flexible Graphite", Carbon, 7, 875-881 (1998). 

  17. E. Zhou, J. Xi, Y. Guo, Y. Liu, Z. Xu, L. Peng, W. Gao, J. Ying, Z. Chen and C. Gao, "Synergistic Effect of Graphene and Carbon Nanotube for High-performance Electromagnetic Interference Shielding Films", Carbon, 133, 316-322 (2018). 

  18. H. Jia, Q. Kong, X. Yang, L. Xie, G. Sun, L. Liang, J. Chen, D. Liu, Q. Guo and C. M. Chen, "Dual-functional Graphene/Carbon Nanotubes Thick Film: Bidirectional Thermal Dissipation and Electromagnetic Shielding", Carbon, 171, 329-340 (2021). 

  19. Z. Wang, B. Mao, Q. Wang, J. Yu, J. Dai, R. Song, Z. Pu, D. He, Z. Wu and S. Mu, "Ultrahigh Conductive Copper/Large Flake Size Graphene Heterostructure Thin-Film with Remarkable Electromagnetic Interference Shielding Effectiveness", Small, 14(20), 1704332 (2018). 

  20. R. Yan, K. Wang, C. Wang, H. Zhang, Y. Song and Q. Guo, J. Wang, "Synthesis and In-situ Functionalization of Graphene Films through Graphite Charging in Aqueous Fe 2 (SO 4 ) 3 ", Carbon, 107, 379-387 (2016). 

  21. J. Li, L. Huang, Y. Yuan, Y. Li and X. He, "Mechanically Strong, Thermally Conductive and Flexible Graphene Composite Paper for Exceptional Electromagnetic Interference Shielding", Mater. Sci. Eng. B, 263, 114893 (2021). 

  22. Y. Liu, B. Qu, X. Wu, Y. Tian, K. Wu, B. Yu, R. Du, Q. Fu and F. Chen, "Utilizing Ammonium Persulfate Assisted Expansion to Fabricate Flexible Expanded Graphite Films with Excellent Thermal Conductivity by Introducing Wrinkles", Carbon, 153, 565-574 (2019). 

  23. Y. Liu, K. Zhang, Y. Mo, L. Zhu, B. Yu, F. Chen and Q. Fu, "Hydrated Aramid Nanofiber Network Enhanced Flexible Expanded Graphite Films Towards High EMI Shielding And Thermal Properties", Compos. Sci. Technol., 168, 28-37 (2018). 

  24. Y. Liu, J. Zeng, D. Han, K. Wu, B. Yu, S. Chai, F. Chen and Q. Fu, "Graphene Enhanced Flexible Expanded Graphite Film with High Electric, Thermal Conductivities and EMI Shielding at Low Content", Carbon, 133, 435-445 (2018). 

  25. A. A. Balandin, "Thermal Properties of Graphene and Nanostructured Carbon Materials", Nat. Mater., 10(8), 569-581 (2011). 

  26. A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao and C. N. Lau, "Superior Thermal Conductivity of Single-Layer Graphene", Nano Lett., 8(3), 902-907 (2008). 

  27. S. Stankovich, D. A, Dikin, G. H. Dommett, K. M. Kohlhass, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen and R. S. Ruoff, "Graphene-based Composite Materials", Nature, 442, 282-286 (2006). 

  28. L. A. Jauregui, Y. Yue, A. N. Sidorov, J. Hu, Q. Yu, G. Lopez, R. Jalilian, D. K. Benjamin, D. A. Delk, W. Wu, G. Lopez, R. Jalilian, D. K. Benjamin, D. A. Delk, W. Wu, Z. Liu, X. Wang, Z. Jiang, X. Ruan, J. Bao, S. S. Pei and Y. P. Chen, "Thermal Transport in Graphene Nanostructures: Experiments and Simulations", ECS Trans., 28(5), 73-83 (2010). 

  29. H. Gao, K. Zhu, G. Hu and C. Xue, "Large-scale Graphene Production by Ultrasound-assisted Exfoliation of Natural Graphite in Supercritical CO 2 /H 2 O Medium", Chem. Eng. J., 308, 872-879 (2017). 

  30. M. D. D. La, S. Bhargava and S. V. Bhosale, "Improved and A Simple Approach For Mass Production of Graphene Nanoplatelets Material", Chemistry Select, 1(5), 949-952 (2016). 

  31. S. Dubin, S. Gilje, K. Wang, V. C. Tung, K. Cha, A. S. Hall, J. Farrar, R. Varshneya, Y. Yang and R. B. Kaner, "One-Step, Solvothermal Reduction Method for Producing Reduced Graphene Oxide Dispersion in Organic Solvents", ACS Nano, 4(7), 3845-3852 (2010). 

  32. K. Ai, Y. Liu, L. Lu, X. Cheng and L. Huo, "A Novel Strategy for Making Soluble Reduced Graphene Oxide Sheets Cheaply by Adopting an Endogenous Reducing Agent", J. Mater. Chem., 21(10), 3365-3370 (2011). 

  33. S. Mao, H. Pu and J. Chen, "Graphene Oxide and its Reduction: Modeling and Experimental Progress", RSC Adv., 2(7), 2643-2662 (2012). 

  34. Y. Hong, Z. Wang and X. Jin, "Sulfuric Acid Intercalated Graphite Oxide for Graphene Preparation", Sci. Rep., 3(1), 3439 (2013) 

  35. K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi and B. H. Hong, "Large-scale Pattern Growth of Graphene Films for Stretchable Transparent Electrodes", Nature, 457, 706-710 (2009). 

  36. P. W. Sutter, J. Flege and E. A. Sutter, "Epitaxial Graphene on Ruthenium", Nat. Mater., 7, 406-411 (2008). 

  37. Technology Org, "Scientists Found a Way to Make Graphene 200 Times Cheaper and Greener" (2019). 

  38. Investing News Network, "What Factors Impact Graphene Cost?" (2021). 

  39. The Graphene Council, "Rice Lab Turns Trash into Valuable Graphene in a Flash" (2020). 

  40. D. Lopez-Diaz, M. Lopez Holgado, J. L. Garcia-Fierro and M. M. Velazquez, "Evolution of the Raman Spectrum with the Chemical Composition of Graphene Oxide", J. Phys. Chem. C, 121, 20489-20497 (2017). 

  41. M. Sang, J. Shin, K. Kim and K. J. Yu, "Electronic and Thermal Properties of Graphene and Recent Advances in Graphene Based Electronics Applications", Nanomaterials, 9(3), 374 (2019). 

  42. B. Marinho, M. Ghislandi, E. Tkalya, C. E. Koning and G. de With, "Electrical Conductivity of Compacts of Graphene, Multi-wall Carbon Nanotubes, Carbon Black, and Graphite Powder", Powder Technol., 221, 351-358 (2012). 

  43. N. Deprez, D. S. McLachlan, "The Analysis of the Electrical Conductivity of Graphite Conductivity of Graphite Powders During Compaction", J. Phys. D: Appl. Phys., 21, 101-107 (1988). 

  44. Roskill, "Natural & Synthetic Graphite: Outlook to 2030" (2020). 

  45. Fastmarkets IM, "Graphite Prices Steady Despite Underlying Supply Concerns" (2021). 

  46. D. Li, M. B. Muller, S. Gilje, R. B. Kaner and G. G. Wallace, "Processable Aqueous Dispersions of Graphene Nanosheets", Nat. Nanotechnol., 3(2), 101-105 (2008). 

  47. S. Pei, J. Zhao, J. Du, W. Ren and H. M. Cheng, "Direct Reduction of Graphene Oxide Films into Highly Conductive and Flexible Graphene Films by Hydrohalic Acids", Carbon, 48(15), 4466-4474 (2010). 

저자의 다른 논문 :

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로