$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

지하수 내 질산성 질소 반응-이동 모델링을 위한 부지특이적 탈질화 계수 선정 방안에 대한 고찰
Determination of Site-specific Denitrification Rate for Nitrate Reactive Transport Modeling in Groundwater 원문보기

지하수토양환경 = Journal of soil and groundwater environment, v.26 no.6, 2021년, pp.74 - 81  

김상현 (한국과학기술연구원 물자원순환연구단) ,  정재식 (한국과학기술연구원 물자원순환연구단) ,  이승학 (한국과학기술연구원 물자원순환연구단)

Abstract AI-Helper 아이콘AI-Helper

A simple and efficient scheme is presented that attempts to implement the site-specific denitrification rate in the reactive transport modeling for the nitrate in groundwater. A series of correlation analyses were conducted using 133 datasets obtained from different nitrate-contaminated sites to fin...

주제어

표/그림 (4)

AI 본문요약
AI-Helper 아이콘 AI-Helper

문제 정의

  • 본 연구에서는 지하수 질산성 질소 모델링 시 필요한 탈 질화 계수를 효과적으로 선정하기 위한 방안에 대해 고찰하였다. 기존 문헌들에서 사용한 탈질화 계수 결정 방법들은 실질적인 수행에 있어 많은 비용이 들고 복잡하거나 혹은 모델링 결과의 정확도가 크게 떨어진다는 한계가 확인되었다.
  • 이에 본 연구에서는 대수층에서의 질산성 질소 반응-이동 모델링 시 적절한 탈질화 계수를 선정할 수 있는 방안을 마련하고 제안하였다. 먼저, 기존 문헌들에서 질산성 질소의 탈질화 계수를 선정한 방법을 정리하고 그 한계 및 잠재적 문제를 파악하였다.
본문요약 정보가 도움이 되었나요?

참고문헌 (48)

  1. 석희준, 전철민, 2009, 농촌지역의 질산성질소 거동 해석을 위한 모델 개발 및 현장 적용, 자원환경지질, 42(6), 561-574. 

  2. 토양지하수정보시스템, https://sgis.nier.go.kr//web/contents/contentView/?pMENU_NO109 [accessed 21.11.17.]. 

  3. 환경부, 2021, 지하수의 수질보전 등에 관한 규칙, 환경부령 제942호. 

  4. Almasri, M.N. and Kaluarachchi, J.J., 2007, Modeling nitrate contamination of groundwater in agricultural watersheds, J. Hydrol., 343(3-4), 211-229. 

  5. Barnes, R.T., Smith, R.L., and Aiken, G.R., 2012, Linkages between denitrification and dissolved organic matter quality, Boulder Creek watershed, Colorado, J. Geophys. Res. Biogeosci., 117. 

  6. Birkinshaw, S.J. and Ewen, J., 2000, Nitrogen transformation component for SHETRAN catchment nitrate transport modelling, J. Hydrol., 230(1-2), 1-17. 

  7. Bonton, A., Rouleau, A., Bouchard, C., and Rodriguez, M.J., 2011, Nitrate transport modeling to evaluate source water protection scenarios for a municipal well in an agricultural area, Agric. Syst., 104(5), 429-439. 

  8. Bottcher, J., Strebel, O., Voerkelius, S., and Schmidt, H.L., 1990, Using isotope fractionation of nitrate-nitrogen and nitrate-oxygen for evaluation of microbial denitrification in a sandy aquifer, J. Hydrol., 114(3-4), 413-424. 

  9. Bradley, P.M., Fernandez Jr, M., and Chapelle, F.H., 1992, Carbon limitation of denitrification rates in an anaerobic groundwater system, Environ. Sci. Technol., 26(12), 2377-2381. 

  10. Burri, N.M., Weatherl, R., Moeck, C., and Schirmer, M., 2019, A review of threats to groundwater quality in the anthropocene, Sci. Total Environ., 684, 136-154. 

  11. Chowdary, V.M., Rao, N.H., and Sarma, P.B.S., 2004, A coupled soil water and nitrogen balance model for flooded rice fields in India, Agric. Ecosyst. Environ., 103(3), 425-441. 

  12. Chung, J., Chung, J.H., and Townsend, T.G., 2019, Approximation of transient redox boundary conditions: its application to numerical analysis of iron plume migration near landfills, Environ. Earth. Sci., 78, 711. 

  13. Clement, T.P., 1999, A modular computer code for simulating reactive multi-species transport in 3-dimensional groundwater systems, United States. 

  14. De Catanzaro, J.B. and Beauchamp, E.G., 1985, The effect of some carbon substrates on denitrification rates and carbon utilization in soil, Biol. Fertil. Soils, 1, 183-187. 

  15. Devito, K.J., Fitzgerald, D., Hill, A.R., and Aravena, R., 2000, Nitrate dynamics in relation to lithology and hydrologic flow path in a river riparian zone, J. Environ. Qual., 29(4), 1075-1084. 

  16. Dhakal, P., Matocha, C.J., Huggins, F.E., and Vandiviere, M.M., 2013, Nitrite reactivity with magnetite, Environ. Sci. Technol., 47(12), 6206-6213. 

  17. Francis, A.J., Slater, J.M., and Dodge, C.J., 1989, Denitrification in deep subsurface sediments, Geomicrobiol. J., 7(1-2), 103-116. 

  18. Frind, E.O., Duynisveld, W.H.M., Strebel, O., and Boettcher, J., 1990, Modeling of multicomponent transport with microbial transformation in groundwater: The fuhrberg case, Water Resour. Res., 26(8), 1707-1719. 

  19. Gu, C. and Riley, W.J., 2010, Combined effects of short term rainfall patterns and soil texture on soil nitrogen cycling - a modeling analysis, J. Contam. Hydrol., 112(1-4), 141-154. 

  20. Gupta, P.K., Kumari, B., Gupta, S.K., and Kumar, D., 2020, Nitrate-leaching and groundwater vulnerability mapping in North Bihar, India, Sustain. Water Resour. Manag., 6, 1-12. 

  21. Hansen, H.C.B., 1989, Composition, stabilization, and light absorption of Fe (II) Fe (III) hydroxy-carbonate ('green rust'), Clay Miner., 24(4), 663-669. 

  22. Harrison, M.D., Groffman, P.M., Mayer, P.M., Kaushal, S.S., and Newcomer, T.A., 2011, Denitrification in alluvial wetlands in an urban landscape, J. Environ. Qual., 40(2), 634-646. 

  23. Huan, H., Hu, L., Yang, Y., Jia, Y., Lian, X., Ma, X., Jiang, Y., and Xi, B., 2020, Groundwater nitrate pollution risk assessment of the groundwater source field based on the integrated numerical simulations in the unsaturated zone and saturated aquifer, Environ. Int., 137, 105532. 

  24. Jahangir, M.M., Johnston, P., Addy, K., Khalil, M.I., Groffman, P., and Richards, K.G., 2013, Quantification of in situ denitrification rates in groundwater below an arable and a grassland system, Water Air Soil Pollut., 224, 1-14. 

  25. Jeon, J.-H., Lee, W.-C., Lee, S.-W., and Kim, S.-O., 2020, The effect of geological media on the denitrification of nitrate in subsurface environments, J. Soil Groundw. Environ., 25, 16-27. 

  26. Karanasios, K., Vasiliadou, I., Pavlou, S., and Vayenas, D., 2010. Hydrogenotrophic denitrification of potable water: A review, J. Hazard. Mater., 180(1-3), 20-37. 

  27. Koh, E.-H., Kaown, D., Mayer, B., Kang, B.-R., Moon, H.S., and Lee, K.-K., 2012, Hydrogeochemistry and isotopic tracing of nitrate contamination of two aquifer systems on Jeju Island, Korea, J. Environ. Qual., 41(6), 1835-1845. 

  28. Koh, E.-H., Lee, E., Kaown, D., Green, C.T., Koh, D.-C., Lee, K.-K., and Lee, S.H., 2018, Comparison of groundwater age models for assessing nitrate loading, transport pathways, and management options in a complex aquifer system, Hydrol. Process., 32(7), 923-938. 

  29. Koh, E.-H., Lee, E., and Lee, K.-K., 2016. Impact of leaky wells on nitrate cross-contamination in a layered aquifer system: Methodology for and demonstration of quantitative assessment and prediction, J. Hydrol., 541, 1133-1144. 

  30. Koh, E.-H., Lee, E., and Lee, K.-K., 2020, Application of geographically weighted regression models to predict spatial characteristics of nitrate contamination: Implications for an effective groundwater management strategy, J. Environ. Manage., 268, 110646. 

  31. Langergraber, G. and Simunek, J., 2005. Modeling variably saturated water flow and multicomponent reactive transport in constructed wetlands, Vadose Zone J., 4(4), 924-938. 

  32. Lasserre, F., Razack, M., and Banton, O., 1999, A gis-linked model for the assessment of nitrate contamination in groundwater, J. Hydrol., 224(3-4), 81-90. 

  33. Lee, M.-S., Lee, K.-K., Hyun, Y., Clement, T.P., and Hamilton, D., 2006, Nitrogen transformation and transport modeling in groundwater aquifers, Ecol. Model., 192(1-2), 143-159. 

  34. Lin, Y.-H. and Gu, Y.-J., 2020, Denitrification kinetics of nitrate by a heterotrophic culture in batch and fixed-biofilm reactors, Processes, 8(5), 547. 

  35. Lind, A.-M., 1983, Nitrate Reduction in the Subsoil, in Denitrification in the Nitrogen Cycle, edited by H. L. Goiterman,. Plenum, New York. 

  36. Meisinger, J. and Randall, G., 1991, Estimating nitrogen budgets for soil-crop systems. In Managing nitrogen for groundwater quality and farm profitability, Soil Science Society of America, Inc. Madison Wisconsin, USA. 

  37. Morris, J.T., Whiting, G.J., and Chapelle, F.H., 1988, Potential denitrification rates in deep sediments from the southeastern coastal plain, Environ. Sci. Technol., 22(7), 832-836. 

  38. Pabich, W.J., Valiela, I., and Hemond, H.F., 2001, Relationship between doc concentration and vadose zone thickness and depth below water table in groundwater of cape cod, U.S.A. Biogeochemistry, 55, 247-268. 

  39. Poulsen, R., Cedergreen, N., Hayes, T., and Hansen, M., 2018, Nitrate: An environmental endocrine disruptor? A review of evidence and research needs, Environ. Sci. Technol., 52(7), 3869-3887. 

  40. Re, V., Sacchi, E., Kammoun, S., Tringali, C., Trabelsi, R., Zouari, K., and Daniele, S., 2017, Integrated socio-hydrogeological approach to tackle nitrate contamination in groundwater resources. The case of Grombalia Basin (Tunisia), Sci. Total Environ., 593-594, 664-676. 

  41. Robertson, W.D. and Merkley, L.C., 2009, In-stream bioreactor for agricultural nitrate treatment, J. Environ. Qual., 38(1), 230-237. 

  42. Senko, J.M., Dewers, T.A., and Krumholz, L.R., 2005, Effect of oxidation rate and Fe (II) state on microbial nitrate-dependent Fe (III) mineral formation, Appl. Environ. Microbiol., 71, 7172-7177. 

  43. Shamrukh, M., Corapcioglu, M.Y., and Hassona, F.A., 2001, Modeling the effect of chemical fertilizers on ground water quality in the Nile Valley Aquifer, Egypt, Groundwater, 39(1), 59-67. 

  44. Tilstra, A., El-Khaled, Y.C., Roth, F., Radecker, N., Pogoreutz, C., Voolstra, C.R., and Wild, C., 2019, Denitrification aligns with N2 fixation in Red Sea corals, Sci. Rep., 9, 19460. 

  45. Van Rijn, J., Tal, Y. and Barak, Y., 1996, Influence of volatile fatty acids on nitrite accumulation by a Pseudomonas stutzeri strain isolated from a denitrifying fluidized bed reactor, Appl. Environ. Microbiol., 62, 2615-2620. 

  46. Wei, X., Bailey, R.T., Records, R.M., Wible, T.C., and Arabi, M., 2019, Comprehensive simulation of nitrate transport in coupled surface-subsurface hydrologic systems using the linked SWAT-MODFLOW-RT3D model, Environ. Model. Softw., 122, 104242. 

  47. Well, R., Augustin, J., Meyer, K., and Myrold, D., 2003, Comparison of field and laboratory measurement of denitrification and N 2 O production in the saturated zone of hydromorphic soils, Soil Biol. Biochem., 35(6), 783-799. 

  48. Xu, D., Li, Y., Howard, A., and Guan, Y., 2013, Effect of earthworm eisenia fetida and wetland plants on nitrification and denitrification potentials in vertical flow constructed wetland, Chemosphere, 92(2), 201-206. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로