$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] Impact resistant properties of Kagome truss reinforced composite panels

Advances in concrete construction, v.12 no.5, 2021년, pp.391 - 398  

Choi, Jeong-Il (Biohousing Research Center, Chonnam National University) ,  Park, Se-Eon (Department of Architecture and Civil Engineering, Chonnam National University) ,  Lee, Sang-Kyu (Department of Architectural Engineering, Chungnam National University) ,  Kim, Gyu-Yong (Department of Architectural Engineering, Chungnam National University) ,  Hwang, Jae-Seung (Department of Architecture and Civil Engineering, Chonnam National University) ,  Lee, Bang Yeon (Department of Architecture and Civil Engineering, Chonnam National University)

Abstract AI-Helper 아이콘AI-Helper

This paper presents an experimental study exploring impact resistant properties of Kagome truss reinforced composite panels. Three types of panels with different materials and reinforcements, i.e., ultra-high-performance mortar, steel fiber, and Kagome truss, were designed and manufactured. High-vel...

Keyword

참고문헌 (44)

  1. Abbas, A., Cotsovos, D.M. and Behinaein, P. (2018), "Behaviour of steel-fibre-reinforced concrete beams under high-rate loading", Comput. Concrete, 22(3), 337-353. https://doi.org/10.12989/cac.2018.22.3.337. 

  2. Abdel-Kader, M.M. and Fouda, A. (2017), "Improving the impact resistance of concrete panels by glass fiber reinforced polymer sheets", Int. J. Prot. Struct., 8(2), 304-320. https://doi.org/10.1177/2041419617712168. 

  3. AFGC (2002), "Ultra-high performance fibre-reinforced concrete-interim recommendations", Assoc. Francaise de Genie Civil, Paris, France. 

  4. ASTM (2007), Standard Test Method for Compressive Strength of Hydraulic Cement Mortars, American Society for Testing and Materials, ASTM International West Conshohocken, PA, USA. 

  5. Beppu, M., Miwa, K., Itoh, M., Katayama, M. and Ohno, T. (2008), "Damage evaluation of concrete plates by high-velocity impact", Int. J. Impact Eng., 35(12), 1419-1426. https://doi.org/10.1016/j.ijimpeng.2008.07.021. 

  6. Choi, J.I., Lee, B.Y., Ranade, R., Li, V.C. and Lee, Y. (2016), "Ultra-high-ductile behavior of a polyethylene fiber-reinforced alkali-activated slag-based composite", Cement Concrete Compos., 70, 153-158. https://doi.org/10.1016/j.cemconcomp.2016.04.002. 

  7. Djamai, Z.I., Bahrar, M., Salvatore, F., Larbi, A.S. and El Mankibi, M. (2017), "Textile reinforced concrete multiscale mechanical modelling: Application to TRC sandwich panels", Finite Elem. Anal. Des., 135, 22-35. https://doi.org/10.1016/j.finel.2017.07.003. 

  8. Graybeal, B.A. (2007), "Compressive behavior of ultra-high-performance fiber-reinforced concrete", ACI Mater. J., 104(2), 146. 

  9. Hanif, A., Cheng, Y., Lu, Z. and Li, Z. (2018), "Mechanical behavior of thin-laminated cementitious composites incorporating cenosphere fillers", ACI Mater. J., 115(1), 117-127. https://doi.org/10.14359/51701007. 

  10. Hazell, P.J. (2015), Armour: Materials, Theory, and Design, CRC Press. 

  11. Huo, J., Li, Z., Zhao, L., Liu, J. and Xiao, Y. (2018), "Dynamic behavior of CFRP-strengthened reinforced concrete beams without stirrups under impact loading", ACI Struct. J., 115, 775-787. 

  12. Husem, M., Cosgun, S.I. and Sesli, H. (2018), "Finite element analysis of RC walls with different geometries under impact loading", Comput. Concrete, 21(5), 583-592. https://doi.org/10.12989/cac.2018.21.5.583. 

  13. Hwang, H.J., Zang, L. and Ma, G. (2019), "Effect of impact loading on bar development length in CCT node", J. Struct. Integr. Maint., 4(1), 26-36. https://doi.org/10.1080/24705314.2019.1565059. 

  14. Hwang, J.S., Lee, K.S., Hur, M.W. and Lee, S.H. (2019), "Mechanical hysteresis model of a metal-wire Kagome truss for seismic strengthening for building systems", J. Asian Archit. Build. Eng., 18(2), 112-120. https://doi.org/10.1080/13467581.2019.1599898. 

  15. JSCE (2008), "Recommendations for design and construction of high performance fiber reinforced cement composites with multiple fine cracks (HPFRCC)", Japan Soc. Civil Eng., Japan, March. 

  16. Kang, K.J. (2015), "Wire-woven cellular metals: The present and future", Prog. Mater. Sci., 69, 213-307. https://doi.org/10.1016/j.pmatsci.2014.11.003. 

  17. Kang, S.T. (2020), "The use of river sand for fine aggregate in UHPC and the effect of its particle size", Adv. Concrete Constr., 10(5), 431-441. https://doi.org/10.12989/acc.2020.10.5.431. 

  18. Kang, S.T., Choi, J.I., Koh, K.T., Lee, K.S. and Lee, B.Y. (2016), "Hybrid effects of steel fiber and microfiber on the tensile behavior of ultra-high performance concrete", Compos. Struct., 145, 37-42. https://doi.org/10.1016/j.compstruct.2016.02.075. 

  19. Karanth, S.S., Ghorpade, V.G. and Rao, H.S. (2017), "Shear and impact strength of waste plastic fibre reinforced concrete", Adv. Concrete Constr., 5(2), 173. https://doi.org/10.12989/acc.2017.5.2.173. 

  20. Kennedy, R. (1976), "A review of procedures for the analysis and design of concrete structures to resist missile impact effects", Nucl. Eng. Des., 37(2), 183-203. https://doi.org/10.1016/0029-5493(76)90015-7. 

  21. Kim, H., Kim, G., Gucunski, N., Nam, J. and Jeon, J. (2015), "Assessment of flexural toughness and impact resistance of bundle-type polyamide fiber-reinforced concrete", Compos. Part B Eng., 78(1), 431-446. https://doi.org/10.1016/j.compositesb.2015.04.011. 

  22. Kim, H., Kim, G., Nam, J., Kim, J., Han, S. and Lee, S. (2015), "Static mechanical properties and impact resistance of amorphous metallic fiber-reinforced concrete", Compos. Struct., 134, 831-844. https://doi.org/10.1016/j.compstruct.2015.08.128. 

  23. Kim, H., Lee, C.J., Shon, C.S., Moon, H. and Chung, C.W. (2020), "Mechanical performance and chloride ion penetration of polyolefin fiber reinforced concrete designed for shotcreting at marine environment", J. Struct. Integr. Maint., 5(1), 8-17. https://doi.org/10.1080/24705314.2019.1692164. 

  24. Kim, S., Jeong, S.Y. and Kang, T.H.K. (2019), "Design of small impact test device for concrete panels subject to high speed collision", Adv. Concrete Constr., 7(1), 23. https://doi.org/10.12989/acc.2019.7.1.023. 

  25. Kim, S., Park, C. and Kim, D.J. (2020), "Dynamic tensile behavior of SIFRCCs at high strain rates", Comput. Concrete, 26(3), 275-283. https://doi.org/10.12989/cac.2020.26.3.275. 

  26. Lee, B.K. and Kang, K.J. (2010), "A parametric study on compressive characteristics of wire-woven bulk Kagome truss cores", Compos. Struct., 92(2), 445-453. https://doi.org/10.1016/j.compstruct.2009.08.029. 

  27. Lee, M., Lee, K., Hur, H. and Kang, K. (2013), "Mechanical behavior of a wire-woven metal under compression", Compos. Struct., 95, 264-277. https://doi.org/10.1016/j.compstruct.2012.06.016. 

  28. Li, P. and Yu, Q. (2019), "Responses and post-impact properties of ultra-high performance fibre reinforced concrete under pendulum impact", Compos. Struct., 208, 806-815. https://doi.org/10.1016/j.compstruct.2018.10.071. 

  29. Liu, S., Zhu, D., Ou, Y., Yao, Y. and Shi, C. (2018), "Impact response of basalt textile reinforced concrete subjected to different velocities and temperatures", Constr. Build. Mater., 175, 381-391. https://doi.org/10.1016/j.conbuildmat.2018.04.193. 

  30. Maalej, M., Quek, S.T. and Zhang, J. (2005), "Behavior of hybrid-fiber engineered cementitious composites subjected to dynamic tensile loading and projectile impact", J. Mater. Civil Eng., 17(2), 143-152. https://doi.org/10.1061/(ASCE)0899-1561(2005)17:2(143). 

  31. Munjal, P. and Singh, S. (2020), "Out-of-plane response of ECC-strengthened masonry walls", J. Struct. Integr. Maint., 5(1), 18-30. https://doi.org/10.1080/24705314.2019.1692165. 

  32. Naaman, A.E. (2000), Ferrocement and Laminated Cementitious Composites, Techno Press, Ann Arbor. 

  33. Park, S.H., Kim, D.J., Ryu, G.S. and Koh, K.T. (2012), "Tensile behavior of ultra high performance hybrid fiber reinforced concrete", Cement Concrete Compos., 34(2), 172-184. https://doi.org/10.1016/j.cemconcomp.2011.09.009. 

  34. Portal, N.W., Flansbjer, M., Zandi, K., Wlasak, L. and Malaga, K. (2017), "Bending behaviour of novel Textile Reinforced Concrete-foamed concrete (TRC-FC) sandwich elements", Compos. Struct., 177, 104-118. https://doi.org/10.1016/j.compstruct.2017.06.051. 

  35. Rahman, I.A., Zaidi, A.M.A., Bux, Q. and Latif, I. (2010), "Review on empirical studies of local impact effects of hard missile on concrete structures", Int. J. Sustain. Constr. Eng. Tech., 1(1), 73-98. 

  36. Siddika, A., Al Mamun, M.A., Ferdous, W. and Alyousef, R. (2020), "Performances, challenges and opportunities in strengthening reinforced concrete structures by using FRPs-A state-of-the-art review", Eng. Fail. Anal., 111, 104480. https://doi.org/10.1016/j.engfailanal.2020.104480. 

  37. Siddiqui, N.A., Al-Salloum, Y.A., Almusallam, T.H., Abadel, A.A. and Abbas, H. (2018), "Reliability assessment of hfrc slabs against projectile impact", Int. J. Concrete Struct. Mater., 12(1), 58. https://doi.org/10.1186/s40069-018-0289-9. 

  38. Singh, S.B., Chauhan, A. and Munjal, P. (2018), "Composite mechanics-based design approach for FRP-strengthened walls", J. Struct. Integr. Maint., 3(3), 160-170. https://doi.org/10.1080/24705314.2018.1492670. 

  39. Ulzurrun, G.S. and Zanuy, C. (2017), "Enhancement of impact performance of reinforced concrete beams without stirrups by adding steel fibers", Constr. Build. Mater., 145, 166-182. https://doi.org/10.1016/j.conbuildmat.2017.04.005. 

  40. Wang, S., Naaman, A.E. and Li, V.C. (2004), "Bending response of hybrid ferrocement plates with meshes and fibers", J. Ferroce., 34(1), 275-288. 

  41. Yang, Y., Wang, Y., Chen, Y. and Zhang, B. (2019), "Test study on the impact resistance of steel fiber reinforced full lightweight concrete beams", Earthq. Struct., 17(6), 567-575. https://doi.org/10.12989/eas.2019.17.6.567. 

  42. Yerramala, A., Chandurdu, C.R. and Desai, V.B. (2016), "Impact strength of metakaolin ferrocement", Mater. Struct., 49(1-2), 5-15. https://doi.org/10.1617/s11527-014-0469-2. 

  43. Yoo, D.Y. and Banthia, N. (2017), "Mechanical and structural behaviors of ultra-high-performance fiber-reinforced concrete subjected to impact and blast", Constr. Build. Mater., 149, 416-431. https://doi.org/10.1617/s11527-014-0469-2. 

  44. Yoo, D.Y. and Banthia, N. (2019), "Impact resistance of fiber-reinforced concrete-A review", Cement Concrete Compos., 104, 103389. https://doi.org/10.1016/j.cemconcomp.2019.103389. 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로