$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Parametric studies on sloshing in a three-dimensional prismatic tank with different water depths, excitation frequencies, and baffle heights by a Cartesian grid method 원문보기

International journal of naval architecture and ocean engineering, v.13, 2021년, pp.691 - 706  

Jin, Qiu (Faculty of Engineering and the Environment, University of Southampton) ,  Xin, Jianjian (Institute of Naval Architecture and Ocean Engineering, Ningbo University) ,  Shi, Fulong (School of Shipping and Naval Arechitecture, Chongqing Jiaotong University) ,  Shi, Fan (Institute of Naval Architecture and Ocean Engineering, Ningbo University)

Abstract AI-Helper 아이콘AI-Helper

This paper aims to numerically investigate violent sloshing in a partially filled three-dimensional (3D) prismatic tank with or without a baffle, further to clarify the suppressing performance of the baffle and the damping mechanism of sloshing. The numerical model is based on a Cartesian grid multi...

주제어

참고문헌 (42)

  1. Akyildiz, H., 2012. A numerical study of the effects of the vertical baffle on liquid sloshing in two-dimensional rectangular tank. J. Sound Vib. 331 (1), 41-52. 

  2. Bai, W., Liu, X., Koh, C.G., 2015. Numerical study of violent LNG sloshing induced by realistic ship motions using level set method. Ocean Eng. 97, 100-113. 

  3. Cao, X.Y., Ming, F.R., Zhang, A.M., 2014. Sloshing in a rectangular tank based on SPH simulation. Appl. Ocean Res. 47, 241-254. 

  4. Cavalagli, N., Biscarini, C., Facci, A.L., Ubertini, F., Ubertini, S., 2017. Experimental and numerical analysis of energy dissipation in a sloshing absorber. J. Fluid Struct. 68, 466-481. 

  5. Chu, C.R., Wu, Y.R., Wu, T.R., 2018. Slosh-induced hydrodynamic force in a water tank with multiple baffles. Ocean Eng. 167, 282-292. 

  6. Delorme, L., Colagrossi, A., Souto-Iglesias, A., Zamora-Rodriguez, R., Botia-Vera, E., 2009. A set of canonical problems in sloshing, Part I: pressure field in forced roll-comparison between experimental results and SPH. Ocean Eng. 36 (2), 168-178. 

  7. Eini, N., Afshar, M.H., Gargari, S.F., Shobeyri, G., Afshar, A., 2020. A fully Lagrangian mixed discrete least squares meshfree method for simulating the free surface flow problems. Eng. Comput. 1-21. 

  8. Eswaran, M., Saha, U.K., Maity, D., 2009. Effect of baffles on a partially filled cubic tank: numerical simulation and experimental validation. Comput. Struct. 87 (3), 198-205. 

  9. Faltinsen, O.M., Timokha, A.N., 2001. An adaptive multimodal approach to nonlinear sloshing in a rectangular tank. J. Fluid Mech. 432, 167-200. 

  10. Faltinsen, O.M., Timokha, A.N., 2002. Asymptotic modal approximation of nonlinear resonant sloshing in a rectangular tank with small fluid depth. J. Fluid Mech. 470, 319-357. 

  11. Faltinsen, O.M., Timokha, A.N., 2009. Sloshing. Cambridge University Press, New York, USA, Cambridge. 

  12. Faltinsen, O.M., Rognebakke, O.F., Timokha, A.N., 2003. Resonant three-dimensional nonlinear sloshing in a square-base basin. J. Fluid Mech. 487, 1-42. 

  13. Godderidge, B., Turnock, S., Earl, C., Tan, M., 2009. The effect of fluid compressibility on the simulation of sloshing impacts. Ocean Eng. 36 (8), 578-587. 

  14. Grotle, E.L., Bihs, H., Aesoy, V., 2017. Experimental and numerical investigation of sloshing under roll excitation at shallow liquid depths. Ocean Eng. 138, 73-85. 

  15. Hu, T., Wang, S., Zhang, G., Sun, Z., Zhou, B., 2019. Numerical simulations of sloshing flows with an elastic baffle using a sph-spim coupled method. Appl. Ocean Res. 93, 101950. 

  16. Jiang, S.C., Teng, B., Bai, W., Gou, Y., 2015. Numerical simulation of coupling effect between ship motion and liquid sloshing under wave action. Ocean Eng. 108, 140-154. 

  17. Jiang, M., Ren, B., Wang, G., Wang, Y.X., 2014. Laboratory investigation of the hydroelastic effect on liquid sloshing in rectangular tanks. J. Hydrodyn. 5, 751-761. 

  18. Jin, X., Lin, P., 2009. Viscous effects on liquid sloshing under external excitations. Ocean Eng. 171, 695-707. 

  19. Jung, J.H., Yoon, H.S., Lee, C.Y., Shin, S.C., 2012. Effect of the vertical baffle height on the liquid sloshing in a three-dimensional rectangular tank. Ocean Eng. 44, 79-89. 

  20. Kang, D.H., Lee, Y.B., 2005. Summary Report of Sloshing Model Test for Rectangular Model, No. 001. Daewoo Shipbuilding & Marine Engineering Co., Ltd., South Korea. 

  21. Kim, Y., Shin, Y.S., Lee, K.H., 2014. Numerical study on slosh-induced impact pressures on three-dimensional prismatic tanks. Appl. Ocean Res. 26 (5), 213-226. 

  22. Lee, D.H., Kim, M.H., Kwon, S.H., Kim, J.W., Lee, Y.B., 2007. A parametric sensitivity study on LNG tank sloshing loads by numerical simulations. Ocean Eng. 34 (1), 3-9. 

  23. Lee, S.H., Lee, Y.G., Jeong, K.L., 2011. Numerical simulation of three-dimensional sloshing phenomena using a finite difference method with marker-density scheme. Ocean Eng. 38 (1), 206-225. 

  24. Liu, D., Lin, P., 2008. A numerical study of three-dimensional liquid sloshing in tanks. J. Comput. Phys. 227 (8), 3921-3939. 

  25. Liu, D., Lin, P., 2009. Three-dimensional liquid sloshing in a tank with baffles. Ocean Eng. 36 (2), 202-212. 

  26. Liu, D., Tang, W., Wang, J., Xue, H., Wang, K., 2017. Modelling of liquid sloshing using clsvof method and very large eddy simulation. Ocean Eng. 129, 160-176. 

  27. Love, J.S., Haskett, T.C., 2018. Nonlinear modelling of tuned sloshing dampers with large internal obstructions: damping and frequency effects. J. Fluid Struct. 79, 1-13. 

  28. Lu, L., Jiang, S.C., Zhao, M., Tang, G.Q., 2015. Two-dimensional viscous numerical simulation of liquid sloshing in rectangular tank with/without baffles and comparison with potential flow solutions. Ocean Eng. 108, 662-677. 

  29. Nave, J.C., Rosales, R.R., Seibold, B., 2010. A gradient-augmented level set method with an optimally local, coherent advection scheme. J. Comput. Phys. 229 (10), 3802-3827. 

  30. Panigrahy, P.K., Saha, U.K., Maity, D., 2009. Experimental studies on sloshing behavior due to horizontal movement of liquids in baffled tanks. Ocean Eng. 36 (3-4), 213-222. 

  31. Pirker, S., Aigner, A., Wimmer, G., 2012. Experimental and numerical investigation of sloshing resonance phenomena in a spring-mounted rectangular tank. Chem. Eng. Sci. 68 (1), 143-150. 

  32. Shi, F., Xin, J., Jin, Q., 2019. A Cartesian grid based multiphase flow model for water impact of an arbitrary complex body. Int. J. Multiphas. Flow 110, 132-147. 

  33. Sotiropoulos, S., Yang, X., 2014. Immersed boundary methods for simulating fluid-structure interaction. Prog. Aero. Sci. 65, 1-21. 

  34. Windt, C., Davidson, J., Chandar, D., Faedo, Nicolas, Ringwood, J., 2019. Evaluation of the overset grid method for control studies of wave energy converters in openfoam numerical wave tanks. J. Ocean Eng. Mar. Energy 6, 55-70. 

  35. Wu, C.H., Faltinsen, O.M., Chen, B.F., 2012. Numerical study of sloshing liquid in tanks with baffles by time-independent finite difference and fictitious cell method. Comput. Fluid 63, 9-26. 

  36. Xin, J., Shi, F., Jin, Q., Ma, L., 2019. Gradient-Augmented level set two-phase flow method with pretreated reinitialization for three-dimensional violent sloshing. J. Fluid Eng. 142 (1). 

  37. Xin, J.J., Chen, Z.L., Shi, F., Shi, F.L., Jin, Q., 2020. Numerical simulation of nonlinear sloshing in a prismatic tank by a Cartesian grid based three-dimensional multiphase flow model. Ocean Eng. 213, 107629. 

  38. Xue, M.A., Zheng, J., Lin, P., 2012. Numerical simulation of sloshing phenomena in cubic tank with multiple baffles. J. Appl. Math. 1-21, 2012. 

  39. Yang, J.M., 2016. Sharp interface direct forcing immersed boundary methods: a summary of some algorithms and applications. J. Hydrody. Ser B 28 (5), 713-730. 

  40. Yu, Y., Ma, N., Fan, S.M., Gu, X.C., 2017. Experimental and numerical studies on sloshing in a membrane-type LNG tank with two floating plates. Ocean Eng. 129, 217-227. 

  41. Zhao, Y., Chen, H.C., 2015. Numerical simulation of 3D sloshing flow in partially filled LNG tank using a coupled level-set and volume-of-fluid method. Ocean Eng. 104, 10-30. 

  42. Zhao, D., Hu, Z., Chen, G., Lim, S., Wang, S., 2017. Nonlinear sloshing in rectangular tanks under forced excitation. Int. J. Nav. Arch. Ocean Eng. 10 (5), 545-565. 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로