$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

생물화학적 산소요구량 농도예측을 위하여 데이터 전처리 접근법을 결합한 새로운 이단계 하이브리드 패러다임
Novel two-stage hybrid paradigm combining data pre-processing approaches to predict biochemical oxygen demand concentration 원문보기

Journal of Korea Water Resources Association = 한국수자원학회논문집, v.54 no.12 suppl., 2021년, pp.1037 - 1051  

김성원 (동양대학교 철도건설안전공학과) ,  서영민 (경북대학교 건설환경공학과) ,  자크로프 마샵 (알제리 트렘슨대학교 수리학과) ,  말릭 아누락 (인도 펀잡 농업대학교 지역연구단)

초록
AI-Helper 아이콘AI-Helper

주요한 수질지표 중의 하나인 생물화학적 산소요구량(BOD) 농도는 호소와 하천에서 생태학적 측면에서 관측항목으로 취급하고 있다. 본 연구에서는 대한민국의 도산 및 황지지점에서 BOD 농도예측을 위하여 새로운 이단계 하이브리드 패러다임(웨이블릿 기반 게이트 순환 유닛, 웨이블릿 기반 일반화된 회귀신경망, 그리고 웨이블릿 기반 랜덤 포레스트) 을 활용하였다. 이러한 모형들은 각 대응하는 독립모형들(게이트 순환 유닛, 일반화된 회귀신경망, 그리고 랜덤 포레스트) 과 함께 평가되었다. 다양한 수질 및 수량지표들이 여러 개의 입력조합(분류1-5) 을 기본으로 하여 독립 및 이단계 하이브리드 모형을 개발하기 위하여 구현되었다. 언급한 모형들은 root mean squared error (RMSE), Nash-Sutcliffe efficiency (NSE), 그리고 correlation coefficient (CC) 를 포함한 세 개의 통계지표로서 평가되었으며, 통계결과치를 분석하면 이단계 하이브리드 모형들이 항상 대응하는 독립모형들의 예측 정도를 개선하지 않은 것으로 나타났다. 대한민국의 도산관측소에서는 DWT-RF5 (RMSE = 0.108 mg/L) 모형이 다른 최적모형과 비교하여 BOD 농도의 더 정확한 예측을 나타내었으며, 황지관측소에서는 DWT-GRNN4 (RMSE = 0.132 mg/L) 모형이 BOD 농도를 예측하는 최고의 모형이다.

Abstract AI-Helper 아이콘AI-Helper

Biochemical oxygen demand (BOD) concentration, one of important water quality indicators, is treated as the measuring item for the ecological chapter in lakes and rivers. This investigation employed novel two-stage hybrid paradigm (i.e., wavelet-based gated recurrent unit, wavelet-based generalized ...

주제어

표/그림 (17)

참고문헌 (59)

  1. Ahmadi, A., Fatemi, Z., and Nazari, S. (2018). "Assessment of input data selection methods for BOD simulation using data-driven models: A case study." Environmental Monitoring and Assessment, Vol. 190, No. 4, p. 239. 

  2. Ahmadi, A., Nasseri, M., and Solomatine, D.P. (2019). "Parametric uncertainty assessment of hydrological models: coupling UNEEC-P and a fuzzy general regression neural network." Hydrological Sciences Journal, Vol. 64, No. 9, pp. 1080-1094. 

  3. Ahmed, A.A.M., and Shah, S.M.A. (2017). "Application of adaptive neuro-fuzzy inference system (ANFIS) to estimate the biochemical oxygen demand (BOD) of Surma River." Journal of King Saud University-Engineering Sciences, Vol. 29, No. 3, pp. 237-243. 

  4. Alizamir, M., Kim, S., Zounemat-Kermani, M., Heddam, S., Shahrabadi, A.H., and Gharabaghi, B. (2021). "Modelling daily soil temperature by hydro-meteorological data at different depths using a novel data-intelligence model: Deep echo state network model." Artificial Intelligence Review, Vol. 54, No. 4, pp. 2863-2890. 

  5. Ay, M., and Kisi, O. (2012). "Modeling of dissolved oxygen concentration using different neural network techniques in Foundation Creek, El Paso County, Colorado." Journal of Environmental Engineering, Vol. 138, No. 6, pp. 654-662. 

  6. Breiman, L. (2001). "Random forests." Machine Learning, Vol. 45, No. 1, pp. 5-32. 

  7. Cho, K., Van Merrienboer, B., Bahdanau, and D., Bengio, Y. (2014). "On the properties of neural machine translation: Encoder-decoder approaches." arXiv preprint arXiv, 1409. 1259. doi: 10.3115/v1/W14-4012 

  8. Deo, R.C., Sahin, M., Adamowski, J.F., and Mi, J. (2019). "Universally deployable extreme learning machines integrated with remotely sensed MODIS satellite predictors over Australia to forecast global solar radiation: A new approach." Renewable and Sustainable Energy Reviews, Vol. 104, pp. 235-261. 

  9. Diamantopoulou, M.J., Antonopoulos, V.Z., and Papamichail, D.M. (2007). "Cascade correlation artificial neural networks for estimating missing monthly values of water quality parameters in rivers." Water Resources Management, Vol. 21, No. 3, pp. 649-662. 

  10. Dogan, E., Sengorur, B., and Koklu, R. (2009). "Modeling biological oxygen demand of the Melen River in Turkey using an artificial neural network technique." Journal of Environmental Management, Vol. 90, Issue 2, pp. 1229-1235. 

  11. Emamgholizadeh, S., Kashi, H., Marofpoor, I., and Zalaghi, E. (2014). "Prediction of water quality parameters of Karoon River (Iran) by artificial intelligence-based models." International Journal of Environmental Science and Technology, Vol. 11, No. 3, pp. 645-656. 

  12. Fallah, H., Kisi, O., Kim, S., and Rezaie-Balf, M. (2019). "A new optimization approach for the least-cost design of water distribution networks: Improved crow search algorithm." Water Resources Management, Vol. 33, No. 10, pp. 3595-3613. 

  13. Friedman, J.H. (2002). "Stochastic gradient boosting." Computational Statistics and Data Analysis, Vol. 38, No. 4, pp. 367-378. 

  14. Garrick, M., Cunnane, C., and Nash, J.E. (1978). "A criterion of efficiency for rainfall-runoff models." Journal of Hydrology, Vol. 36, No. 3-4, pp. 375-381. 

  15. Granata, F., Papirio, S., Esposito, G., Gargano, R., and de Marinis, G. (2017). "Machine learning algorithms for the forecasting of wastewater quality indicators." Water, Vol. 9, No. 2, p. 105. 

  16. Jouanneau, S., Recoules, L., Durand, M.J., Boukabache, A., Picot, V., Primault, Y., Lakel, A., Sengelin, M., Barillon, B., and Thouand, G. (2014). "Methods for assessing biochemical oxygen demand (BOD): A review." Water Research, Vol. 49, pp. 62-82. 

  17. Kalteh, A.M. (2015). "Wavelet genetic algorithm-support vector regression (wavelet GA-SVR) for monthly flow forecasting." Water Resources Management, Vol. 29, No. 4, pp.1283-1293. 

  18. Khaled, B., Abdellah, A., Noureddine, D., Salim, H., and Sabeha, A. (2017). "Modelling of biochemical oxygen demand from limited water quality variable by ANFIS using two partition methods." Water Quality Research Journal of Canada, Vol. 53, No. 1, pp. 24-40. 

  19. Kim, S. (2000). "The application of neural networks method for the flood discharge forecasting in the river basin." Journal of Korean Society of Civil Engineers, Vol. 20, No. 6-B, pp. 801-811 (in Korean). 

  20. Kim, S. (2011). "Nonlinear hydrologic modeling using the stochastic and neural networks approach." Disaster Advances, Vol. 4, No. 1, pp. 53-63. 

  21. Kim, S., Alizamir, M., Zounemat-Kermani, M., Kisi, O., and Singh, V.P. (2020). "Assessing the biochemical oxygen demand using neural networks and ensemble tree approaches in South Korea." Journal of Environmental Management, Vol. 270, p. 110834. 

  22. Kim, S., and Kim, H.S. (2007). "Neural networks-genetic algorithm model for modeling of nonlinear evaporation and evapotranspiration time series 1. Theory and application of the model." Journal of Korean Water Resources Association, Vol. 40, No. 1, pp. 73-88. (in Korean) 

  23. Kim, S., and Kim, H.S. (2008). "Neural networks and genetic algorithm approach for nonlinear evaporation and evapotranspiration modeling." Journal of Hydrology, Vol. 351, No. 3-4, pp. 299-317. 

  24. Kim, S., Kim, J.H., and Park, K.B. (2009). "Statistical learning theory for the disaggregation of the climatic data." Proceedings of the 33rd IAHR Congress, Vancouver, Canada, pp. 1154-1162. 

  25. Kim, S., Kisi, O., Seo, Y., Singh, V.P., and Lee, C.J. (2017). "Assessment of rainfall aggregation and disaggregation using data-driven models and wavelet decomposition." Hydrology Research, Vol. 48, No. 1, pp. 99-116. 

  26. Kim, S., Maleki, N., Rezaie-Balf, M., Singh, V.P., Alizamir, M., Kim, N.W., Lee, J.T., and Kisi, O. (2021). "Assessment of the total organic carbon employing the different nature-inspired approaches in the Nakdong River, South Korea." Environmental Monitoring and Assessment, Vol. 193, No. 7, pp.1-22. 

  27. Kim, S., Park, K.B., and Seo, Y.M. (2012). "Estimation of pan evaporation using neural networks and climate-based models." Disaster Advances, Vol. 5, No. 3, pp. 34-43. 

  28. Kim, S., Seo, Y., and Lee, C.J. (2016). "Modeling of rainfall by combining neural computation and wavelet technique." Procedia Engineering, Vol. 154, pp. 1231-1236. 

  29. Kisi, O. (2006). "Generalized regression neural networks for evapotranspiration modelling." Hydrological Sciences Journal, Vol. 51, No. 6, pp. 1092-1105. 

  30. Ladlani, I., Houichi, L., Djemili, L., Heddam, S., and Belouz, K. (2012). "Modeling daily reference evapotranspiration (ET o ) in the north of Algeria using generalized regression neural networks (GRNN) and radial basis function neural networks (RBFNN): A comparative study." Meteorology and Atmospheric Physics, Vol. 118, No. 3, pp. 163-178. 

  31. Li, J., Abdulmohsin, H.A., Hasan, S.S., Kaiming, L., Al-Khateeb, B., Ghareb, M.I., and Mohammed, M.N. (2019). "Hybrid soft computing approach for determining water quality indicator: Euphrates River." Neural Computing and Applications, Vol. 31, No. 3, pp. 827-837. 

  32. Li, X., Zecchin, A.C., and Maier, H.R. (2014). "Selection of smoothing parameter estimators for general regression neural networks - applications to hydrological and water resources modelling." Environmental Modelling and Software, Vol. 59, pp. 162-186. 

  33. Mallat, S.G. (1989). "A theory of multiresolution signal decomposition: the wavelet representation." IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 11, No. 3, pp. 674-693. 

  34. Ministry of Environment (ME) (2020). Full-scale implementation of the total water pollution control system in the 2030 phase of the Four Major Rivers (7.15). Press release. 

  35. Nash, J.E., and Sutcliffe, J.V. (1970). "River flow forecasting through conceptual models, Part 1 - A discussion of principles." Journal of Hydrology, Vol. 10, No. 3, pp. 282-290. 

  36. Noori, R., Yeh, H.D., Abbasi, M., Kachoosangi, F.T., and Moazami, S. (2015). "Uncertainty analysis of support vector machine for online prediction of five-day biochemical oxygen demand." Journal of Hydrology, Vol. 527, pp. 833-843. 

  37. Percival, D.B., and Walden, A.T. (2000). Wavelet methods for time series analysis. Cambridge University Press, New York, NY, U.S. 

  38. Raheli, B., Aalami, M.T., El-Shafie, A., Ghorbani, M.A., and Deo, R.C. (2017). "Uncertainty assessment of the multilayer perceptron (MLP) neural network model with implementation of the novel hybrid MLP-FFA method for prediction of biochemical oxygen demand and dissolved oxygen: A case study of Langat River." Environmental Earth Sciences, Vol. 76, No. 14, p. 503. 

  39. Rezaie-Balf, M., Maleki, N., Kim, S., Ashrafian, A., Babaie-Miri, F., Kim, N.W., Chung, I.M., and Alaghmand, S. (2019). "Forecasting daily solar radiation using CEEMDAN decomposition-based MARS model trained by crow search algorithm." Energies, Vol. 12, No. 8, p. 1416. 

  40. Royal Commission on Sewage Disposal (1908). Fifth report on methods of treating and disposing of sewage. UK. 

  41. Sahay, R.R., and Srivastava, A. (2014). "Predicting monsoon floods in rivers embedding wavelet transform, genetic algorithm and neural network." Water Resources Management, Vol. 28, No. 2, pp. 301-317. 

  42. Seo, Y., and Kim, S. (2016). "Hydrological forecasting using hybrid data-driven approach." American Journal of Applied Sciences, Vol. 13, No. 8, pp.891-899. 

  43. Seo, Y., Kim, S., and Singh, V.P. (2018). "Comparison of different heuristic and decomposition techniques for river stage modeling." Environmental Monitoring and Assessment, Vol. 190, No. 7, pp. 1-22. 

  44. Seo, Y., Kim, S., Kisi, O., and Singh, V.P. (2015). "Daily water level forecasting using wavelet decomposition and artificial intelligence techniques." Journal of Hydrology, Vol. 520, pp. 224-243. 

  45. Seo, Y., Kim, S., Kisi, O., Singh, V.P., and Parasuraman, K. (2016). "River stage forecasting using wavelet packet decomposition and machine learning models." Water Resources Management, Vol. 30, No. 11, pp. 4011-4035. 

  46. Simard, M., Saatchi, S.S., and De Grandi, G. (2000). "The use of decision tree and multiscale texture for classification of JERS-1 SAR data over tropical forest." IEEE Transactions on Geoscience and Remote Sensing, Vol. 38, No. 5, pp. 2310-2321. 

  47. Solgi, A., Pourhaghi, A., Bahmani, R., and Zarei, H. (2017). "Improving SVR and ANFIS performance using wavelet transform and PCA algorithm for modeling and predicting biochemical oxygen demand (BOD)." Ecohydrology and Hydrobiology, Vol. 17, No. 2, pp.164-175. 

  48. Specht, D.F. (1991). "A general regression neural network." IEEE Transactions on Neural Networks, Vol. 2, No. 6, pp. 568-576. 

  49. Tao, H., Bobaker, A.M., Ramal, M.M., Yaseen, Z.M., Hossain, M.S., and Shahid, S. (2019). "Determination of biochemical oxygen demand and dissolved oxygen for semi-arid river environment: application of soft computing models." Environmental Science and Pollution Research, Vol. 26, No. 1, pp. 923-937. 

  50. Taylor, K.E. (2001). "Summarizing multiple aspects of model performance in a single diagram." Journal of Geophysical Research: Atmospheres, Vol. 106, No. D7, pp. 7183-7192. 

  51. Willmott, C.J., and Matsuura, K. (2005). "Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance." Climate Research, Vol. 30, No. 1, pp. 79-82. 

  52. Yang, G., Lee, H., and Lee, G. (2020). "A hybrid deep learning model to forecast particulate matter concentration levels in Seoul, South Korea." Atmosphere, Vol. 11, No. 4, p. 348. 

  53. Yaseen, Z.M., Karami, H., Ehteram, M., Mohd, N.S., Mousavi, S.F., Hin, L.S., Kisi, O., Farzin, S., Kim, S., and El-Shafie, A. (2018). "Optimization of reservoir operation using new hybrid algorithm." KSCE Journal of Civil Engineering, Vol. 22, No. 11, pp. 4668-4680. 

  54. Zakhrouf, M., Bouchelkia, H., Stamboul, M., and Kim, S. (2020). "Novel hybrid approaches based on evolutionary strategy for streamflow forecasting in the Chellif River, Algeria." Acta Geophysica, Vol. 68, No. 1, pp.167-180. 

  55. Zakhrouf, M., Bouchelkia, H., Stamboul, M., Kim, S., and Heddam, S. (2018). "Time series forecasting of river flow using an integrated approach of wavelet multi-resolution analysis and evolutionary data-driven models. A case study: Sebaou River (Algeria)." Physical Geography, Vol. 39, No. 6, pp. 506-522. 

  56. Zhang, Y., Pulliainen, J., Koponen, S., and Hallikainen, M. (2002). "Application of an empirical neural network to surface water quality estimation in the Gulf of Finland using combined optical data and microwave data." Remote Sensing of Environment, Vol. 81, No. 2-3, pp. 327-336. 

  57. Zou, R., Lung, W.S., and Wu, J. (2007). "An adaptive neural network embedded genetic algorithm approach for inverse water quality modeling." Water Resources Research, Vol. 43, No. 8, W08427. 

  58. Zounemat-Kermani, M., Rajaee, T., Ramezani-Charmahineh, A., and Adamowski, J.F. (2017). "Estimating the aeration coefficient and air demand in bottom outlet conduits of dams using GEP and decision tree methods." Flow Measurement and Instrumentation, Vol. 54, pp. 9-19. 

  59. Zounemat-Kermani, M., Seo, Y., Kim, S., Ghorbani, M.A., Samadianfard, S., Naghshara, S., Kim, N.W., and Singh, V.P. (2019). "Can decomposition approaches always enhance soft computing models? Predicting the dissolved oxygen concentration in the St. Johns River, Florida." Applied Sciences, Vol. 9, No. 12, p. 2534. 

저자의 다른 논문 :

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로