$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

생활폐수 내 혼합균주를 이용한 미생물 연료전지의 구동 특성에 관한 연구
A Study on the Driving Characteristics of Microbial Fuel Cell Using Mixed Strains in Domestic Wastewater 원문보기

한국수소 및 신에너지학회 논문집 = Transactions of the Korean Hydrogen and New Energy Society, v.32 no.6, 2021년, pp.506 - 513  

김상규 (전북대학교 대학원 에너지저장.변환공학과(BK21 FOUR), 수소.연료전지연구센터) ,  유동진 (전북대학교 대학원 에너지저장.변환공학과(BK21 FOUR), 수소.연료전지연구센터)

Abstract AI-Helper 아이콘AI-Helper

The use of fossil fuels is a major contributor to the increase atmospheric greenhouse gas emissions. As such problems arise, interest in new and renewable energy devices, particularly fuel cells, is greatly increasing. In this study, various characteristics of mixed strains were observed in wastewat...

주제어

참고문헌 (31)

  1. J. Li, Q. Chen, T. Wang, H. Wang, and J. Ni, "Hydrochemistry and nutrients determined the distribution of greenhouse gases in saline groundwater", Environmental Pollution, Vol. 286, 2021, pp. 117383, doi: https://doi.org/10.1016/j.envpol.2021.117383. 

  2. D. Han and D. J. Yoo, "Synthesis and charaterization of polybenzimidazole random copolymers containing methylene chain for high temperature PEMFC", Trans Korean Hydrogen New Energy Soc, Vol. 29, No. 6, 2018, pp. 578-586, doi: https://doi.org/10.7316/KHNES.2018.29.6.578. 

  3. S. K. Ryu, M. Vinothkannan, A. R. Kim, and D. J. Yoo, "Effect of type and stoichiometry of fuels on performance of polybenzimidazole-based proton exchange membrane fuel cells operating at the temperature range of 120-160 ℃", Energy, Vol. 238, 2022, pp. 121791, doi: https://doi.org/10.1016/j.energy.2021.121791. 

  4. J. Y. Chu, A. R. Kim, K. S. Nahm, H. K. Lee, and D. J. Yoo, "Synthesis and characterization of partially fluorinated sulfonated poly(arylene biphenylsulfone ketone) block copolymers containing 6F-BPA and perfluorobiphenylene units", International Journal of Hydrogen Energy, Vol. 38, No. 14, 2013, pp. 6268-6274, doi: https://doi.org/10.1016/j.ijhydene.2012.11.144. 

  5. K. H. Lee, J. Y, Chu, A. R. Kim, K. S. Nahm, C. J. Kim, and D. J. Yoo, "Densely sulfonated block copolymer composite membranes containing phosphotungstic acid for fuel cell-membranes", Journal of Membrane Science, Vol. 434, 2013, pp. 35-43, doi:https://doi.org/10.1016/j.memsci.2013.01.037. 

  6. D. Park, Y. J. Sohn, Y. Y. Choi, M. Kim, and J. Hong, "A study on oxygen diffusion characteristics according to changes in flow field shape of polymer electrolyte membrane fuel cell metallic bipolar plate for building", Trans Korean Hydrogen New Energy Soc, Vol. 32, No. 4, 2021, pp. 245-255, doi: http://dx.doi.org/10.7316/KHNES.2021.32.4.245. 

  7. G. G. Kumar, A. R. Kim, K. S. Nahm, D. J. Yoo, and R. Elizabeth, "High ion and lower molecular transportation of the poly vinylidene fluoride-hexa fluoro propylene hybrid membranes for the high temperature and lower humidity direct methanol fuel cell applications", Journal of Power Sources, Vol. 195, No. 18, 2010, pp. 5922-5928, doi: https://doi.org/10.1016/j.jpowsour.2009.11.021. 

  8. Y. Cao, H. Mu, W. Liu, R. Zhang, J. Guo, M. Xian, and H. Liu, "Electricigens in the anode of microbial fuel cells: pure cultures versus mixed communities", Microbial Cell Factories, Vol. 18, No. 39, 2019, doi: https://doi.org/10.1186/s12934-019-1087-z. 

  9. B. E. Logan, "Microbial fuel cells", Wiley, 2007, pp. 146-161, doi: https://doi.org/10.1002/9780470258590. 

  10. C. Karthikeyan, Y. Sathishkumar, Y. S. Lee, A. R. Kim, D. J. Yoo, and G. G. kumar, "The influence of chitosan substrate and its nanometric form toward the green power generation in sediment microbial fuel cell", J. Nanoscience and Nanotechnology, Vol. 17, No. 1, 2017, pp. 558-563, https://doi.org/10.1166/jnn.2017.12090. 

  11. J. Y. Chu, K. H. Lee, A. R. Kim, and D. J. Yoo, "Study on the chemical stabilities of poly (arylene ether) random copolymers for alkaline fuel cells: effect of main chain structures with different monomer units", ACS Sustainable Chemistry & Engineering, Vol. 7, No. 24, 2019, pp. 20077-20087, doi: https://doi.org/10.1021/acssuschemeng.9b05934. 

  12. R. Kannan, A. R. Kim, and D. J. Yoo, "Enhanced electrooxidation of methanol, ethylene glycol, glycerol, and xylitol over a polypyrrole/manganese oxyhydroxide/palladium nanocomposite electrode", J. Appl. Electrochem., Vol. 44, 2014, pp 893-902, doi: https://doi.org/10.1007/s10800-014-0706-y. 

  13. D. J. Yoo, S. H. Hyun, A. R. Kim, G. G. Kumar, and K. S. Nahm, "Novel sulfonated poly(arylene biphenylsulfone ether) copolymers containing bisphenylsulfonyl biphenyl moiety: structural, thermal, electrochemical and morphological characteristics", Polymer International, Vol. 60, No. 1, 2010, pp. 85-92, doi: https://doi.org/10.1002/pi.2914. 

  14. K. Rabaey and W. Verstraete, "Microbial fuel cells: novel biotechnology for energy generation", Trends Biotechnology, Vol. 23, No. 6, 2005, pp. 291-298, doi: https://doi.org/10.1016/j.tibtech.2005.04.008. 

  15. W. Kong, Q. Guo, X. Wang, and X. Yue, "Electricity generation from wastewater using an anaerobic fluidized bed microbial fuel cell", Industrial & Engineering Chemistry Research, Vol. 50, No. 21, 2011, pp. 1225-12232, doi: https://doi.org/10.1021/ie2007505. 

  16. J. R. Kim, S. Cheng, S. E. Oh, and B. E. Logan, "Power generaion using different cation, anion, and ultrafiltration membrane in microbial fuel cells", Environ. Sci. Technol., Vol. 41, No. 3, 2007, pp. 1004-1009, doi: https://doi.org/10.1021/es062202m. 

  17. M. Grzebyk and G Pozniak, "Microbial fuel cells (MFCs) with interpolymer cation exchange membranes", Separation and Purification Technology, Vol. 41, No. 3, 2005, pp. 321-328, doi: https://doi.org/10.1016/j.seppur.2004.04.009. 

  18. M. Rahimnejad, A. Adhami, S. Darvari, A. Zirepour, and S. E. Oh, "Microbial fuel cell as new technology for bioelectricity generation: a review", Alexandria Engineering Journal, Vol. 54, No. 3, 2015, pp. 745-756, doi: https://doi.org/10.1016/j.aej.2015.03.031. 

  19. T. H. Choi, H. W. Kim, and H. B. Park, "Current research trends in microbial fuel cell based on polymer electrolyte membranes", The Membrane Society of Korea, Vol. 20, No. 3, 2010, pp. 173-184. Retrieved from http://203.250.217.22/article/JAKO201009654401239.pdf. 

  20. I. H. Park, G. G. Kumar, A. R. Kim, P. Kim, and K. S. Nahm, "Microbial electricity generation of diversified carbonaceous electrodes under variable mediators", Bioelectrochemistry, Vol. 80, No. 2, 2011, pp. 99-104, doi: https://doi.org/10.1016/j.bioelechem.2010.06.007. 

  21. J. X. Leong, W. R. W. Daud, M. Ghasemi, K. B. Liew, and M. Ismail, "Ion exchange membranes as separators in microbial fuel cells for bioenergy conversion: a comprehensive review", Renewable and Sustainable Energy Reviews, Vol. 28, 2013, pp. 575-587, doi: https://doi.org/10.1016/j.rser.2013.08.052. 

  22. A. R. Kim, J. C. Gavunada, and D. J. Yoo, "Amelioration in physicochemical properties and single cell performance of sulfonated poly(ether ether ketone) block copolymer composite membrane using sulfonated carbon nanotubes for intermediate humidity fuel cells", International Journal of Energy Research, Vol. 43, No. 7, 2019, pp. 2974-2989, doi: https://doi.org/10.1002/er.4494. 

  23. S. P. Jung, E. Kim, and B. Koo, "Effects of wire-type and mesh-type anode current collectors on performance and electrochemistry of microbial fuel cells", Chemosphere, Vol. 209, 2018, pp. 542-550, doi: https://doi.org/10.1016/j.chemosphere.2018.06.070. 

  24. C. W. Lin, C. H. Wu, Y. H. Chiu, and S. L. Tsai, "Effects of different mediators on electricity generation and microbial structure of a toluene powered microbial fuel cell", Fuel, Vol. 125, 2014, pp. 30-35, doi: https://doi.org/10.1016/j.fuel.2014.02.018. 

  25. D. H Park and J. G Zeikus, "Electricity generation in microbial fuel cells using neutral red as an electronophore", Applied and Environmental Microbiology, Vol. 66, No. 4, 2000, pp. 1292-1297, doi: https://doi.org/10.1128/AEM.66.4.1292-1297.2000. 

  26. B. E. Logan, B. Hamelers, R. Rozendal, U. Schroder, J. Keller, S. Freguia, P. Aelterman, W. Verstraete, and K. Rabaey, "Microbial fuel cells: methodology and technology", Environmental Science & Technology, Vol. 40, No. 17, 2006, pp. 5181-5192, doi: https://doi.org/10.1021/es0605016. 

  27. C. J. Park, A. R. Kim, and D. J. Yoo, "Preparation and charaterization of SPAES/SPVdF-co-HFP blending membranes for polymer electrolyte membrane fuel cells", Trans Korean Hydrogen New Energy Soc, Vol. 30, No. 3, 2019, pp. 227-236, doi: https://doi.org/10.7316/KHNES.2019.30.3.227. 

  28. N. Eaktasang, C. S. Kang, S. J. Ryu, Y. Suma, and H. S. Kim, "Enhanced current production by electroactive biofilm of sulfate-reducing bacteria in the microbial fuel cell", Environmental Engineering Research, Vol. 18, No. 4, 2013, pp. 277-281, doi: https://doi.org/10.4491/eer.2013.18.4.277. 

  29. N. Uria, I. Ferrera, and J. Mas, "Electrochemical performance and microbial community profiles in microbial fuel cells in relation to electron transfer mechanisms", BMC Microbiology, Vol. 17, 2017, pp. 208, doi: https://doi.org/10.1186/s12866-017-1115-2. 

  30. D. A. Nguyen, N. Pham, and H. T. Pham, "Wastewater treatment performance and microbial community of anode electrodes of membrane and membrane-less MFCs under effect of sunlight", Journal of Water Process Engineering, Vol. 42, 2021, pp. 102159, doi: https://doi.org/10.1016/j.jwpe.2021.102159. 

  31. W. Wang, Q. Zhao, J. Ding, K. Wang, and J. Jiang, "Develpoment of an MFC-powered BEF system with novel Fe-Mn-Mg/CF composite cathode to degrade refractory pollutants", Journal of Clearner Production, Vol. 326, 2021, pp. 129348, doi: https://doi.org/10.1016/j.jclepro.2021.129348. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

FREE

Free Access. 출판사/학술단체 등이 허락한 무료 공개 사이트를 통해 자유로운 이용이 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로