$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] Development of a generalized scaling law for underwater explosions using a numerical and experimental parametric study

Structural engineering and mechanics : An international journal, v.77 no.3, 2021년, pp.305 - 314  

Kim, Yongtae (Department of Mechanical Engineering and KI for the NanoCentury, Korea Advanced Institute of Science and Technology (KAIST)) ,  Lee, Seunggyu (Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST)) ,  Kim, Jongchul (Maritime Technology Research Institute, Agency for Defense Development) ,  Ryu, Seunghwa (Department of Mechanical Engineering and KI for the NanoCentury, Korea Advanced Institute of Science and Technology (KAIST))

Abstract AI-Helper 아이콘AI-Helper

In order to reduce enormous cost of real-scale underwater explosion experiments on ships, the mechanical response of the ships have been analyzed by combining scaled-down experiments and Hopkinson's scaling law. However, the Hopkinson's scaling law is applicable only if all variables vary in an iden...

Keyword

참고문헌 (44)

  1. Aquelet, N., Souli, M., Gabrys, J. and Olovson, L. (2003), "A new ALE formulation for sloshing analysis", Struct. Eng. Mech., 16(4), 423-440. http://dx.doi.org/10.12989/sem.2003.16.4.423. 

  2. Barras, G., Souli, M., Aquelet, N. and Couty, N. (2012), "Numerical simulation of underwater explosions using an ALE method. The pulsating bubble phenomena", Ocean Eng., 41, 53-66. https://doi.org/10.1016/j.oceaneng.2011.12.015. 

  3. Bjorno, L. and Levin, P. (1976), "Underwater explosion research using small amounts of chemical explosives", Ultrasonics, 14(6), 263-267. https://doi.org/10.1016/0041-624X(76)90033-0. 

  4. Brett, J. M., Yiannakopoulos, G. and Van der Schaaf, P. J. (2000), "Time-resolved measurement of the deformation of submerged cylinders subjected to loading from a nearby explosion", J. Impact Eng., 24(9), 875-890. https://doi.org/10.1016/S0734-743X(00)00023-3 

  5. Bruce, G.J. and Eyres, D.J. (2012), Ship Construction: Butterworth-Heinemann, Oxford, United Kingdom. 

  6. Cranz, K.J. (1936), Lehrbuch der Ballistik: Erganzungen zum Band I, 5. Aufl. (1925), Band II (1926) und Band III, 2. Aufl.(1927), J. Springer, Berlin, German. 

  7. Hadianfard, M. A. and Farahani, A. (2012), "On the effect of steel columns cross sectional properties on the behaviours when subjected to blast loading", Struct. Eng. Mech., 44(4), 449-463. 

  8. Hammond, L. and Saunders, D.S. (1997), The Applicability of Scaling Laws to Underwater Shock Tests, DSTO Aeronautical and Maritime Research Laboratory, Australia. 

  9. Hawass, A., Mostafa, H. and Elbeih, A. (2015), "Multi-layer protective armour for underwater shock wave mitigation", Defence Technol., 11(4), 338-343. https://doi.org/10.1016/j.dt.2015.04.006. 

  10. Hopkinson, B. (1915), British Ordnance Board Minutes 13565, The National Archives, Kew, UK, 11. 

  11. Hung, C., Hsu, P. and Hwang-Fuu, J. (2005), "Elastic shock response of an air-backed plate to underwater explosion", J. Impact Eng., 31(2), 151-168. https://doi.org/10.1016/j.ijimpeng.2003.10.039. 

  12. Hung, C., Lin, B., Hwang-Fuu, J. and Hsu, P. (2009), "Dynamic response of cylindrical shell structures subjected to underwater explosion", Ocean Eng., 36(8), 564-577. https://doi.org/10.1016/j.oceaneng.2009.02.001. 

  13. Itoh, S., Hamashima, H., Murata, K. and Kato, Y. (2002), "Determination of JWL parameters from underwater explosion test", the 12th International Detonation Symposium, San Diego, California, August. 

  14. Kim, D. K., Ng, W. C. K. and Hwang, O. (2018), "An empirical formulation to predict maximum deformation of blast wall under explosion", Struct. Eng. Mech., 68(2), 237-245. https://doi.org/10.12989/sem.2018.68.2.237. 

  15. Kim, J.H., Shin, H.C. and Park, M.K. (2005), "Application of Arbitrary Lagrangian-Eulerian Technique for Air Explosion Structural Analysis for Naval Ships Using LS-DYNA", J. Ship Ocean Technol., 9(1), 38-46. 

  16. Klaseboer, E., Hung, K., Wang, C., Wang, C., Khoo, B., Boyce, P., Debono, S. and Charlier, H. (2005), "Experimental and numerical investigation of the dynamics of an underwater explosion bubble near a resilient/rigid structure", J. Fluid Mech., 537, 387. https://doi.org/10.1017/S0022112005005306. 

  17. Koli, S., Chellapandi, P., Rao, L. B. and Sawant, A. (2020), "Study on JWL equation of state for the numerical simulation of nearfield and far-field effects in underwater explosion scenario", Eng. Sci. Technol., 23(4), https://doi.org/10.1016/j.jestch.2020.01.007. 

  18. Li, G.Q., Yang, T.C. and Chen, S.W. (2009), "Behavior and simplified analysis of steel-concrete composite beams subjected to localized blast loading", Struct. Eng. Mech., 32(2), 337-350. 

  19. Li, J. and Rong, J.L. (2012), "Experimental and numerical investigation of the dynamic response of structures subjected to underwater explosion", European J. Mech. B/Fluids, 32, 59-69. https://doi.org/10.1016/j.oceaneng.2009.02.001. 

  20. Li, P. and Xu, G.-g. (2006), "Approximate Calculation of Underwater Explosion Shock Wave Propagation", Chinese J. Explosives Propellants, 29(4), 21. 

  21. Li, Q. and Jones, N. (2000), "On dimensionless numbers for dynamic plastic response of structural members", Archive of Appl. Mech., 70(4), 245-254. https://doi.org/10.1007/s004199900072. 

  22. Liang, C.-C. and Tai, Y.-S. (2006), "Shock responses of a surface ship subjected to noncontact underwater explosions", Ocean Eng., 33(5-6), 748-772. https://doi.org/10.1016/j.oceaneng.2005.03.011. 

  23. Liu, N., Wu, W., Zhang, A. and Liu, Y. (2017), "Experimental and numerical investigation on bubble dynamics near a free surface and a circular opening of plate", Phys. Fluids, 29(10), 107102. https://doi.org/10.1063/1.4999406. 

  24. Lou, Y.F., Luo, C. and Jin, X.L. (2015), "Numerical simulations of interactions between solitary waves and elastic seawalls on rubble mound breakwaters", Struct. Eng. Mech., 53(3), 393-410. 

  25. Lu, Y. (2009), "Modelling of concrete structures subjected to shock and blast loading: an overview and some recent studies", Struct. Eng. Mech., 32(2), 235-249. https://doi.org/10.12989/sem.2009.32.2.235. 

  26. McLean, M., Hill, J., Cobb, R. and Randall, F. (1994), "Modal Test of John Paul Jones (DDG­53) Mast and Mast­Mounted Antennas", Naval Eng. J., 106(2), 110-117. https://doi.org/10.1111/j.1559-3584.1994.tb02826.x. 

  27. Neuberger, A., Peles, S. and Rittel, D. (2007a), "Scaling the response of circular plates subjected to large and close-range spherical explosions, Part I: Air-blast loading", J. Impact Eng., 34(5), 859-873. https://doi.org/10.1016/j.ijimpeng.2006.04.001. 

  28. Neuberger, A., Peles, S. and Rittel, D. (2007b), "Scaling the response of circular plates subjected to large and close-range spherical explosions. Part II: Buried charges", J. Impact Eng., 34(5), 874-882. https://doi.org/10.1016/j.ijimpeng.2006.04.002. 

  29. Ngo, T. and Mendis, P. (2009), "Modelling the dynamic response and failure modes of reinforced concrete structures subjected to blast and impact loading", Struct. Eng. Mech., 32(2), 269-282. 

  30. Otsuka, M., Matsui, Y., Murata, K., Kato, Y. and Itoh, S. (2004), "A study on shock wave propagation process in the smooth blasting technique", Livermore Software Technology Corporation, Livermore, CA, USA. 

  31. Park, J. W. (2012), "Underwater explosion testing of catamaran-like structure vs. simulation and feasibility of using scaling law", M.Sc. Dissertation, Korea Advanced Institute of Science and Technology, Daejeon, Korea. 

  32. Park, S.W. and Cho, J.R. (2012), "Adaptive fluid-structure interaction simulation of large-scale complex liquid containment with two-phase flow", Struct. Eng. Mech., 41(4), 559-573. https://doi.org/10.12989/sem.2012.41.4.559. 

  33. Rajendran, R. and Narasimhan, K. (2001), "Linear elastic shock response of plane plates subjected to underwater explosion", J. Impact Eng., 25(5), 493-506. https://doi.org/10.1016/S0734-743X(00)00056-7. 

  34. Rajendran, R. and Narasimhan, K. (2006), "Deformation and fracture behaviour of plate specimens subjected to underwater explosion-A review", J. Impact Eng., 32(12), 1945-1963. https://doi.org/10.1016/j.ijimpeng.2005.05.013. 

  35. Rezaei, M.J., Gerdooei, M. and Nosrati, H.G. (2020), "Blast resistance of a ceramic-metal armour subjected to air explosion: A parametric study", Struct. Eng. Mech., 74(6), 737-745. https://doi.org/10.12989/sem.2020.74.6.737. 

  36. Shin, Y. S. and Schneider, N. A. (2003), "Ship shock trial simulation of USS Winston S. Churchill (DDG 81): Modeling and simulation strategy and surrounding fluid volume effects", 74th Shock and Vibration Symposium, San Diego, California, USA. October. 

  37. Sohn, J.M., Kim, S.J., Seong, D.J., Kim, B.J., Ha, Y.C., Seo, J.K. and Paik, J.K. (2014), "Structural impact response characteristics of an explosion-resistant profiled blast walls in arctic conditions", Struct. Eng. Mech., 51(5), 755-771. https://doi.org/10.12989/sem.2014.51.5.755. 

  38. Souli, M. h. and Benson, D. J. (2013), Arbitrary Lagrangian Eulerian and Fluid-Structure Interaction: Numerical Simulation, John Wiley and Sons, NJ, USA. 

  39. Wang, W., Zhang, D., Lu, F., Wang, S.C. and Tang, F. (2012), "Experimental study on scaling the explosion resistance of a oneway square reinforced concrete slab under a close-in blast loading", J. Impact Eng., 49, 158-164. https://doi.org/10.1016/j.ijimpeng.2012.03.010. 

  40. Yao, S., Zhang, D., Lu, F., Chen, X. and Zhao, P. (2017), "A combined experimental and numerical investigation on the scaling laws for steel box structures subjected to internal blast loading", Impact Eng., 102, 36-46. https://doi.org/10.1016/j.ijimpeng.2016.12.003. 

  41. Yi, N. H., Kim, S.B., Nam, J. W., Ha, J. H. and Kim, J.H. J. (2011), "Debonding failure analysis of FRP-retrofitted concrete panel under blast loading", Struct. Eng. Mech., 38(4), 479-501. http://dx.doi.org/10.12989/sem.2011.38.4.479. 

  42. Zhang, A.M., Zeng, L.Y., Wang, S.P. and Chen, Y. (2011), "The evaluation method of total damage to ship in underwater explosion", Appl. Ocean Res., 33(4), 240-251. https://doi.org/10.1016/j.apor.2011.06.002. 

  43. Zhang, Z.H., Wang, Y., Zhang, L.J., Yuan, J.H. and Zhao, H.F. (2011), "Similarity research of anomalous dynamic response of ship girder subjected to near field underwater explosion", Appl. Math. Mech., 32(12), 1491-1504. https://doi.org/10.1007/s10483-011-1518-9. 

  44. Zhao, Y.P. (1998), "Suggestion of a new dimensionless number for dynamic plastic response of beams and plates", Arch. Appl. Mech., 68(7-8), 524-538. https://doi.org/10.1007/s004190050184. 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로