$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

4,4'-Diaponeurosporene from Lactobacillus plantarum subsp. plantarum KCCP11226: Low Temperature Stress-Induced Production Enhancement and In Vitro Antioxidant Activity 원문보기

Journal of microbiology and biotechnology, v.31 no.1, 2021년, pp.63 - 69  

Kim, Mibang (Department of Bioengineering and Nano-Bioengineering, Graduate School of Incheon National University) ,  Jung, Dong-Hyun (Bacteria Research Team, Nakdonggang National Institute of Biological Resources) ,  Seo, Dong-Ho (Department of Food Science and Technology, College of Agriculture and Life Sciences, Jeonbuk National University) ,  Park, Young-Seo (Department of Food Science and Biotechnology, Gachon University) ,  Seo, Myung-Ji (Department of Bioengineering and Nano-Bioengineering, Graduate School of Incheon National University)

Abstract AI-Helper 아이콘AI-Helper

Carotenoids, which have biologically beneficial effects and occur naturally in microorganisms and plants, are pigments widely applied in the food, cosmetics and pharmaceutical industries. The compound 4,4'-diaponeurosporene is a C30 carotenoid produced by some Lactobacillus species, and Lactobacillu...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • In addition, the availability of strain KCCP11226 for probiotic use was investigated through in vitro experiments on safety and functionalities such as antibiotic resistance, cell surface hydrophobicity, and stress tolerance, including acid/bile, high temperature, and lysozyme. To the best of our knowledge, this study is the first report on the antioxidant activity of 4, 4′-diaponeurosporene produced by Lactobacillus.
본문요약 정보가 도움이 되었나요?

참고문헌 (33)

  1. 1 Mussagy CU Winterburn J Santos-Ebinuma VC Pereira JFB 2019 Production and extraction of carotenoids produced by microorganisms Appl. Microbiol. Biotechnol. 103 1095 1114 10.1007/s00253-018-9557-5 30560452 

  2. 2 Sen T Barrow CJ Deshmukh SK 2019 Microbial pigments in the food industry-Challenges and the way forward Front. Nutr. 6 7 10.3389/fnut.2019.00007 30891448 

  3. 3 Garrido-Fernández J Maldonado-Barragán A Caballero-Guerrero B Hornero-Méndez D Ruiz-Barba JL 2010 Carotenoid production in Lactobacillus plantarum Int. J. Food Microbiol. 140 34 39 10.1016/j.ijfoodmicro.2010.02.015 20303609 

  4. 4 Siezen RJ van Hylckama Vlieg JE 2011 Genomic diversity and versatility of Lactobacillus plantarum , a natural metabolic engineer Cell. Fact. 10 S3 10.1186/1475-2859-10-S1-S3 21995294 

  5. 5 Zago M Fornasari ME Carminati D Burns P Suàrez V Vinderola G 2011 Characterization and probiotic potential of Lactobacillus plantarum strains isolated from cheeses Food Microbiol. 28 1033 1040 10.1016/j.fm.2011.02.009 21569949 

  6. 6 Lee PC Schmidt-Dannert C 2002 Metabolic engineering towards biotechnological production of carotenoids in microorganisms Appl. Microbiol. Biotechnol. 60 1 11 10.1007/s00253-002-1101-x 12382037 

  7. 7 Turpin W Renaud C Avallone S Hammoumi A Guyot J-P Humblot C 2016 PCR of crtN M combined with analytical biochemistry: An efficient way to identify carotenoid producing lactic acid bacteria Syst. Appl. Microbiol. 39 115 121 10.1016/j.syapm.2015.12.003 26776108 

  8. 8 Kim M Seo D-H Park Y-S Cha I-T Seo M-J 2019 Isolation of Lactobacillus plantarum subsp. plantarum producing C 30 carotenoid 4,4′-diaponeurosporene and the assessment of its antioxidant activity J. Microbiol. Biotechnol. 29 1925 1930 10.4014/jmb.1909.09007 31635447 

  9. 9 Kim M Jung D-H Seo D-H Chung W-H Seo M-J 2020 Genome analysis of Lactobacillus plantarum subsp. plantarum KCCP11226 reveals a well-conserved C 30 carotenoid biosynthetic pathway 3 Biotech. 10 450 10.1007/s13205-020-2149-y 32181112 

  10. 10 Sachindra NM Sato E Maeda H Hosokawa M Niwano Y Kohno M 2007 Radical scavenging and singlet oxygen quenching activity of marine carotenoid fucoxanthin and its metabolites J. Agric. Food Chem. 55 8516 8522 10.1021/jf071848a 17894451 

  11. 11 Zhang Y Fang H Xie Q Sun J Liu R Hong Z 2014 Comparative evaluation of the radical-scavenging activities of fucoxanthin and its stereoisomers Molecules 19 2100 2113 10.3390/molecules19022100 24549234 

  12. 12 Bergamini CM Gambetti S Dondi A Cervellati C 2004 Oxygen, reactive oxygen species and tissue damage Curr. Pharm. Design 10 1611 1626 10.2174/1381612043384664 15134560 

  13. 13 Young AJ Lowe GM 2018 Carotenoids-antioxidant properties Antioxidants 7 28 10.3390/antiox7020028 29439455 

  14. 14 Hagi T Kobayashi M Kawamoto S Shima J Nomura M 2013 Expression of novel carotenoid biosynthesis genes from Enterococcus gilvus improves the multistress tolerance of Lactococcus lactis J. Appl. Microbiol. 114 1763 1771 10.1111/jam.12182 23473548 

  15. 15 Steiger S Perez-Fons L Fraser P Sandmann G 2012 Biosynthesis of a novel C 30 carotenoid in Bacillus firmus isolates J. Appl. Microbiol. 113 888 895 10.1111/j.1365-2672.2012.05377.x 22738026 

  16. 16 Young AJ Lowe GM 2001 Antioxidant and prooxidant properties of carotenoids Arch. Biochem. Biophys. 385 20 27 10.1006/abbi.2000.2149 11361018 

  17. 17 Ekmekci H Aslim B Ozturk S 2009 Characterization of vaginal lactobacilli coaggregation ability with Escherichia coli Microbiol. Immunol. 53 59 65 10.1111/j.1348-0421.2009.00115.x 19291088 

  18. 18 Kim SH Kim MS Lee BY Lee PC 2016 Generation of structurally novel short carotenoids and study of their biological activity Sci. Rep. 6 21987 10.1038/srep21987 26902326 

  19. 19 Chae HS Kim K-H Kim SC Lee PC 2010 Strain-dependent carotenoid productions in metabolically engineered Escherichia coli Appl. Biochem. Biotechnol. 162 2333 2344 10.1007/s12010-010-9006-0 20559754 

  20. 20 Wieland B Feil C Gloria-Maercker E Thumm G Lechner M Bravo J-M 1994 Genetic and biochemical analyses of the biosynthesis of the yellow carotenoid 4,4′-diaponeurosporene of Staphylococcus aureus J. Bacteriol. 176 7719 7726 10.1128/JB.176.24.7719-7726.1994 8002598 

  21. 21 Yang J Li Y Zhang L Fan M Wei X 2017 Response surface design for accumulation of selenium by different lactic acid bacteria 3 Biotech. 7 52 10.1007/s13205-017-0709-6 28444596 

  22. 22 Han Q Kong B Chen Q Sun F Zhang H 2017 In vitro comparison of probiotic properties of lactic acid bacteria isolated from Harbin dry sausages and selected probiotics J. Funct. Food 32 391 400 10.1016/j.jff.2017.03.020 

  23. 23 Tulumoglu S Yuksekdag ZN Beyatli Y Simsek O Cinar B Yaşar E 2013 Probiotic properties of lactobacilli species isolated from children's feces Anaerobe 24 36 42 10.1016/j.anaerobe.2013.09.006 24055630 

  24. 24 García-Cayuela T Korany AM Bustos I de Cadiñanos LPG Requena T Peláez C 2014 Adhesion abilities of dairy Lactobacillus plantarum strains showing an aggregation phenotype Food Res. 57 44 50 10.1016/j.foodres.2014.01.010 

  25. 25 Hu P-L Yuan Y-H Yue T-L Guo C-F 2018 A new method for the in vitro determination of the bile tolerance of potentially probiotic lactobacilli Appl. Microbiol. Biotechnol. 102 1903 1910 10.1007/s00253-018-8742-x 29330692 

  26. 26 Frengova GI Beshkova DM 2009 Carotenoids from Rhodotorula and Phaffia : yeasts of biotechnological importance J. Ind. Microbiol. Biotechnol. 36 163 180 10.1007/s10295-008-0492-9 18982370 

  27. 27 Simpson KL Nakayama T Chichester C 1964 Biosynthesis of yeast carotenoids J. Bacteriol. 88 1688 1694 10.1128/JB.88.6.1688-1694.1964 14240958 

  28. 28 Polulyakh OV Podoprigora OI Eliseev SA Ershov YV Bykhovskii VY Dmitrovskii AA 1992 Biosynthesis of torulene and torularhodin in the yeast Phaffia rhodozyma Appl. Biochem. Microbiol. 27 541 545 

  29. 29 Bhosale P 2004 Environmental and cultural stimulants in the production of carotenoids from microorganisms Appl. Microbial. Biotechnol. 63 351 361 10.1007/s00253-003-1441-1 14566431 

  30. 30 Roginsky V Lissi EA 2005 Review of methods to determine chain-breaking antioxidant activity in food Food Chem. 92 235 254 10.1016/j.foodchem.2004.08.004 

  31. 31 Méndez-Robles MD Permady HH Jaramillo-Flores ME Lugo-Cervantes EC Cardador-Martínez A Canales-Aguirre AA 2006 C-26 and C-30 Apocarotenoids from seeds of Ditaxis heterantha with antioxidant activity and protection against DNA oxidative damage J. Nat. Prod. 69 1140 1144 10.1021/np050489f 16933864 

  32. 32 Hinneburg I Dorman HD Hiltunen R 2006 Antioxidant activities of extracts from selected culinary herbs and spices Food Chem. 97 122 129 10.1016/j.foodchem.2005.03.028 

  33. 33 Müller L Fröhlich K Böhm V 2011 Comparative antioxidant activities of carotenoids measured by ferric reducing antioxidant power (FRAP), ABTS bleaching assay (αTEAC), DPPH assay and peroxyl radical scavenging assay Food Chem. 129 139 148 10.1016/j.foodchem.2011.04.045 

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로