$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Ferrate(VI)를 이용한 다양한 수중 환경에서의 tetracycline의 분해 특성 및 반응 경로 연구
Degradation characteristics and reaction pathways of tetracycline by ferrate(VI) in various aqueous conditions 원문보기

上下水道學會誌 = Journal of Korean Society of Water and Wastewater, v.35 no.1, 2021년, pp.27 - 37  

박경덕 (부경대학교 지구환경시스템과학부) ,  김일규 (부경대학교 환경공학과)

Abstract AI-Helper 아이콘AI-Helper

Tetracycline is one of the most commonly used as antibiotics for the livestock industry and it is still widely used nowadays. Tetracycline and its metabolites are excreted with excrement, which is difficult to completely removed with conventional sewage treatment, therefore it is apprehended that th...

주제어

참고문헌 (61)

  1. Afonso-Olivares, C., Torres-Padron, M. Sosa-Ferrera, Z., and Santana-Rodriguez, J.J. (2013). Assessment of the presence of pharmaceutical compounds in seawater samples from coastal area of Gran Canaria Island (Spain), Antibiotics, 2, 274-287. 

  2. Alvarez-Torrellas, S., Rodriguez, A., Ovejero, G., and Garcia, J. (2016). Comparative adsorption performance of ibuprofen and tetracycline from aqueous solution by carbonaceous materials, Chem. Eng. J., 283, 936-947. 

  3. Auerbach, E.A., Seyfried, E.E., and McMahon, K.D. (2007). Tetracycline resistance genes in activated sludge wastewater treatment plants, Water Res., 41(5), 1143-1151. 

  4. Chen, J., Xua, X., Zeng, X., Feng, M., Qu, R., Wang, Z., Nesnas, N., and Sharma, V.K., (2018). Ferrate(VI) oxidation of polychlorinated diphenyl sulfides: Kinetics, degradation, and oxidized products, Water Res., 143, 1-9. 

  5. Chen, J., Qi, Y., Pan, X., Wu, N., Zuo, J., Li, C., Qu, R., Wang, Z., and Chen, Z. (2019). Mechanistic insights into the reactivity of Ferrate(VI) with phenolic compounds and the formation of coupling products, Water Res., 158, 338-349. 

  6. Dabrowski, A., Podkoscielny, P., Hubicki, Z., and Barczak, M. (2005). Adsorption of phenolic compounds by activated carbon-a critical review, Chemosphere, 58(8), 1049-1070. 

  7. Deng, J., Wu, H., Wang, S., Liu, Y., and Wang, H. (2019). Removal of sulfapyridine by ferrate(VI): efficiency, influencing factors and oxidation pathway, Environ. Technol., 40(12). 1585-1591. 

  8. Dong, H., Qiang, Z., Lian, J., and Qu, J. (2017). Promoted oxidation of diclofenac with ferrate (Fe(VI)): Role of ABTS as the electron shuttle, J. Hazard. Mater., 336, 65-70. 

  9. Drzewicz, P., Drobniewska, A., Sikorska, K., and Nalecz-Jawecki, G. (2018). Analytical and ecotoxicological studies on degradation of fluoxetine and fluvoxamine by potassium ferrate, Environ. Technol., 40(25), 3265-3275. 

  10. Duan, L., Li, L., Xu, Z., and Chen, W. (2014). Adsorption of tetracycline to nano-NiO: the effect of co-existing Cu(ii) ions and environmental implications, Environ. Sci. Processes Impacts, 16, 1462-1468. 

  11. Elmund, G.K., Morrison, S.M., Grant, D.W., and Nevins, M.P. (1971). Role of excreted chlortetracycline in modifying the decomposition process in feedlot waste, Bull. Environ. Contam. Toxicol., 6(2), 129-132. 

  12. Feng, M., Baum, J.C., Nesnas, N., Lee, Y., Huang, C.H., and Sharma, V.K. (2019). Oxidation of sulfonamide antibiotics of six-membered heterocyclic moiety by ferrate(VI): Kinetics and mechanistic insight into SO 2 extrusion, Environ. Sci. Technol., 53(5), 2695-2704. 

  13. Figueroa-Diva, R.A., Vasudevan, D., and MacKay, A.A. (2010). Trends in soil sorption coefficients within common antimicrobial families, Chemosphere, 79, 786-793. 

  14. Graham, N., Jiang, C.C., Li, X.Z., Jiang, J.Q., and Ma, J. (2004). The influence of pH on the degradation of phenol and chlorophenols by potassium ferrate, Chemosphere, 56, 949-956. 

  15. Grobben-Verpoorten, A., Dihuidi, K., Roets, E., Hoogmartens, J., and Vanderhaeghe, H. (1985). Determination of the stability of tetracycline suspensions by high performance liquid chromatography, Pharm. Weekbl., 7, 104-108. 

  16. Han, Q., Wang, H., Dong, W., Liu, T., Yin, Y., and Fan, H. (2015). Degradation of bisphenol-A by ferrate(VI) oxidation: Kinetics, products and toxicity assessment, Chem. Eng. J., 262, 34-40. 

  17. Huang, H., Sommerfeld, D., Dunn, B.C., Eyring, E.M., and Lloyd, C.R. (2001). Ferrate(VI) oxidation of aqueous phenol: Kinetics and mechanism, J. Phys. Chem. A, 105(14), 3536-3541. 

  18. Jiang, J.Q. (2013). Advances in the development and application of ferrate(VI) for water and wastewater treatment, J. Chem. Technol. Biotechnol., 89(2), 165-177. 

  19. Kanari, N., Ostrosi, E., Diliberto, C., Filippova, I., Shallari, S., Allain, E., Diot, F., Patisson F., and Yvon, J. (2019). Green process for industrial waste transformation into super-oxidizing materials named alkali metal ferrates (VI), Materials, 12(12), 1977. 

  20. Kemper, N. (2008). Veterinary antibiotics in the aquatic and terrestrial environment, Ecol. Indic., 8(1), 1-13. 

  21. Kim, K.H., Cho, E.S., Kim, K.S., Kim, J.E., Seol, K.H., Park, J.C., and Kim, Y.H. (2015). Investigation on changes in pig farm productivity after ban of antibiotics growth promoter in commercial mixed feed, Korean. J. Agric. Sci., 42(3), 223-229. 

  22. Kulshrestha, P., Giese,, R.F., and Aga, D.S. (2004). Investigating the molecular interactions of oxytetracycline in clay and organic matter: Insights on factors affecting its mobility in soil, Environ. Sci. Technol., 38(15), 4097-4105. 

  23. Kumar, K., Gupta, S.C., Baidoo, S.K., Chander, Y., and Rosen, C.J. (2005). Antibiotic uptake by plants from soil fertilized with animal manure, J. Environ. Qual., 34, 2082-2085. 

  24. Laksono, F.B. and Kim, I.K.. (2015). Application of in situ liquid ferrate(VI) for 2-bromophenol removal, J. Korean Soc. Water Wastewater, 29(6), 685-692. 

  25. Laksono, F.B. and Kim, I.K. (2017). Study on 4-bromophenol degradation using wet oxidation in-situ liquid ferrate(VI) in the aqueous phase, Desalination, Water Treat., 58, 391-398. 

  26. Lee, Y., Cho, M., Kim, J.Y., and Yoon. J. (2004). Chemistry of ferrate (Fe(VI)) in aqueous solution and its applications as a green chemical, J. Ind. Eng. Chem., 10(1), 161-171. 

  27. Lee, Y., Yoon, J., and von Gunten, U. (2005). Spectrophotometric determination of ferrate (Fe(VI)) in water by ABTS, Water Res., 39, 1946-1953. 

  28. Li, C., Li, X. Z., and Graham, N. (2005). A study of the preparation and reactivity of potassium ferrate, Chemosphere, 61, 537-543. 

  29. Lim, S.K., Lee, J.E., Lee, H.S., Nam, H.M., Moon, D.C., Jang, G.C., Park, M.J., Jung, Y.G., Jung, S.C., and Wee, S.H. (2014). Trends in antimicrobial sales for livestock and fisheries in Korea during 2003-2012, Korean J. Vet. Res., 54(2), 81-86. 

  30. Liu, H., Pan, X., Chen, J., Qi, Y., Qu, R., and Wang, Z. (2019). Kinetics and mechanism of the oxidative degradation of parathion by Ferrate(VI), Chem. Eng. J., 365, 142-152. 

  31. Ma, Y., Gao, N., and Li, C. (2012). Degradation and pathway of tetracycline hydrochloride in aqueous solution by potassium ferrate, Environ. Eng. Sci., 29(5), 357-362. 

  32. Mackulak, T., Birosova, L., Bodik, I., Grabic, R., Takacova, A., Smolinska, M., Hanusova, A., Hives, J., and Galf, M. (2016). Zerovalent iron and iron(VI): Effective means for the removal of psychoactive pharmaceuticals and illicit drugs from wastewaters, Sci. Total Environ., 539, 420-426. 

  33. Macova, Z., Bouzek, K., Hives, J., Sharma V.K., Terryn, R.J., and Baum, J.C. (2009). Research progress in the electrochemical synthesis of ferrate(VI), Electrochim. Acta, 54(10), 2673-2683. 

  34. Manoli, K., Morrison, L.M., Sumarah, M.W., Nakhla, G., Ray, A.K., and Sharma, V.K. (2019). Pharmaceuticals and pesticides in secondary effluent wastewater: Identification and enhanced removal by acid-activated ferrate(VI), Water Res., 148, 272-280. 

  35. Ministry of Agriculture, Food, and Rural Affairs, Animal and Plant Quarantine Agency, Ministry of Food and Drug Safety. (2018). National monitoring of antibiotic usage and resistance in 2017: Livestock and food of animal origin, 11-1543061-000088-10, Ministry of Agriculture, Food, and Rural Affairs, 9. 

  36. Mitsunaga, T., Conner, A.H., and Hill, C.G. (2001). Reaction of formaldehyde with phenols: a computational chemistry study, Wood Adhesives 2000, Forest Products Society, 147-153. 

  37. Mohammed-Ali, M.A.J. (2012). Stability study of tetracycline drug in acidic and alkaline solutions by colorimetric method, J. Chem. Pharm., 4(2), 1319-1326. 

  38. Pan, M. and Chu, L.M. (2016). Phytotoxicity of veterinary antibiotics to seed germination and root elongation of crops, Ecotox. Environ. Safe., 126, 228-237. 

  39. Park, K.D. and Kim, I.K. (2016). Development of on-site process for refractory 2,4-dichlorophenol treatment, J. Korean Soc. Pow. Sys. Eng., 20(1), 42-49. 

  40. Peings, V., Frayret, J., and Pigot, T. (2015). Mechanism for the oxidation of phenol by sulfatoferrate(VI): Comparison with various oxidants, J. Environ. Manage., 157, 287-296. 

  41. Peings, V., Pigot, T., Baylere, P., Sotiropoulos, J.M., and Frayret, J. (2017). Removal of pharmaceuticals by a potassium ferrate(VI) material: from practical implementation to reactivity prediction, Environ. Sci.: Water Res. Technol., 3, 699-709. 

  42. Phillips, I., Casewell, M., Cox, T., De Groot, B., Friis, C., Jones, R., Nightingale, C., Preston, R., and Waddell, J. (2004). Does the use of antibiotics in food animals pose a risk to human health? A critical review of published data, J. Antimicrob. Chemother., 53, 28-52. 

  43. Prado, N., Ochoa, J., and Amrane, A. (2009). Biodegradation and biosorption of tetracycline and tylosin antibiotics in activated sludge system, Process Biochem., 44(11), 1302-1306. 

  44. Regueiro, J., Breidbach, A., and Wenzl, T. (2015). Derivatization of bisphenol A and its analogues with pyridine3-sulfonyl chloride: multivariate optimization and fragmentation patterns by liquid chromatography/Orbitrap mass spectrometry, Rapid Commun. Mass Spectrom., 29, 1473-1484. 

  45. Sanli, N., Sanli, S., Ozkan, G., and Denizli, A. (2010). Determination of pKa values of some sulfonamides by LC and LC-PDA methods in acetonitrile-water binary mixtures, J. Braz. Chem. Soc., 21(10), 1952-1960. 

  46. Sharma, V.K. (2002). Potassium ferrate(VI): an environmentally friendly oxidant, Adv. Environ. Res., 6, 143-156. 

  47. Sharma, V.K., Kazama, F., Jiangyong, H., and Ray, A.K., (2005). Ferrates (iron(VI) and iron(V)): environmentally friendly oxidants and disinfectants, J. Water Health, 3(1), 45-58. 

  48. Tasho, R.P. and Cho, J.Y. (2016). Veterinary antibiotics in animal waste, its distribution in soil and uptake by plants: A review, Sci. Total Environ., 563-564, 366-376. 

  49. Wagner, W.F., Gurip, J.R., and Hart, E.N. (1952). Factors affecting stability of aqueous potassium ferrate(VI) solutions, Anal. Chem., 24(9), 1497-1498. 

  50. Wang, Y., Liu, H., Liu, G., Xie, Y., and Gao, S. (2015). Oxidation of diclofenac by potassium ferrate(VI): Reaction kinetics and toxicity evaluation, Sci. Total Environ., 506-507, 252-258. 

  51. Wang, H., Liu, Y., and Jiang, J.Q. (2016). Reaction kinetics and oxidation product formation in the degradation of acetaminophen by ferrate (VI), Chemosphere, 155, 583-590. 

  52. Wu, K., Wang, H., Zhou, C., Amina, Y., and Si, Y. (2018). Efficient oxidative removal of sulfonamide antibiotics from the wastewater by potassium ferrate, J. Adv. Oxid. Technol., 21(1). 

  53. Yang, B., Ying, G.G., Zhang, L.J., Zhou, L.J., Liu, S., and Fang, Y.X. (2011). Kinetics modeling and reaction mechanism of ferrate(VI) oxidation of benzotriazoles, Water Res., 45(6), 2261-2269. 

  54. Yang, B., Ying, G.G., Zhao, J.L., Liu, S., Zhou, L.J., and Chen, F. (2012). Removal of selected endocrine disrupting chemicals (EDCs) and pharmaceuticals and personal care products (PPCPs) during ferrate(VI) treatment of secondary wastewater effluents, Water Res., 46(7), 2194-2204. 

  55. Yang, B., Ying, G.G., Chen, Z.F., Zhao, J.L., Peng, F.Q., and Chen, X.W. (2014). Ferrate(VI) oxidation of tetrabromobisphenol A in comparison with bisphenol A, Water Res., 62(1), 211-219. 

  56. Yang, S. and Doong, R. (2008). Preparation of potassium ferrate for the degradation of tetracycline, ACS Symp. Ser. 985, 405-419. 

  57. Yang, Y., Zeng, Z., Zhang, C., Huang, D., Zeng, G., Xiao, R., Lai, C., Zhou, C., Guo, H., Xue, W., Cheng, M., Wang, W., and Wang, J. (2018). Construction of iodine vacancy-rich BiOIAg@AgI Z-scheme heterojunction photocatalysts for visible-light-driven tetracycline degradation Transformation pathways and mechanism insight, Chem. Eng. J., 349, 808-821. 

  58. Zhang, P., Zhang, G., Dong, J., Fan, M., and Zeng, G. (2012). Bisphenol A oxidative removal by ferrate (Fe(VI)) under a weak acidic condition, Sep. Purif. Technol., 84(9), 46-51. 

  59. Zhou, Z. and Jiang, J.Q. (2015a). Treatment of selected pharmaceuticals by ferrate(VI): Performance, kinetic studies and identification of oxidation products, J. Pharmaceut. Biomed., 106(15), 37-45. 

  60. Zhou, Z. and Jiang, J.Q. (2015b). Reaction kinetics and oxidation products formation in the degradation of ciprofloxacin and ibuprofen by ferrate(VI), Chemosphere, 119, S95-S100. 

  61. Zhu, X.D., Wang, Y.J., Sun, R.J., and Zhou, D.M. (2013). Photocatalytic degradation of tetracycline in aqueous solution by nanosized TiO 2 , Chemosphere, 92(8), 925-932. 

저자의 다른 논문 :

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로