$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[논문철회]MAP 결정화 적용을 위한 잉여슬러지의 인 및 암모니아의 거동 특성
[Retracted]Characteristics of phosphorus and ammonia behavior of waste activated sludge for MAP crystallization application 원문보기

上下水道學會誌 = Journal of Korean Society of Water and Wastewater, v.35 no.1, 2021년, pp.71 - 81  

오경수 (서울과학기술대학교 에너지환경대학원) ,  김장호 (주식회사 한경이엔씨) ,  박기태 (성균관대학교 수자원전문대학원) ,  박대원 (서울과학기술대학교 에너지환경대학원) ,  김형수 (성균관대학교 수자원전문대학원)

Abstract AI-Helper 아이콘AI-Helper

Phosphorus is a vital resource for sustaining agriculture and nutrition, but a limited non-renewable resource. This paper aimed to derive the behavioral characteristics of phosphate, ammonia and metals of waste activated sludge (WAS) by process of activated sludge for application of magnesium ammoni...

주제어

참고문헌 (31)

  1. Altinbas M. (2009). Environmental technologies to treat nitrogen pollution. IWA Publishing, London, UK. 

  2. Bond, P.L., Keller, J. and Blackall, L. (1999). Anaerobic phosphate release from activated sludge with enhanced biological phosphorous removal, A possible mechanism of intracellular pH control, Biotechnol. Bioeng., 63, 507-515. 

  3. Celen, I. and Turker, M. (2001). Recovery of ammonia as struvite from anaerobic digester effluents, Environ. Technol., 22, 1263-1272. 

  4. Chai, H.W., Choi, Y.H., Kim, M.W., Kim, Y.J. and Jung, S.H. (2020). Trends of microbial electrochemical technologies for nitrogen removal in wastewater treatment, J. Korean Soc. Water Wastewater, 34(5), 345-356. 

  5. Chauhan, C., Vyas, P. and Joshi, M. (2011). Growth and characterization of struvite-k crystals, Cryst. Res. Technol., 46(2), 187-194. 

  6. Chen, Y., Jiang, S., Yuan, H., Zhou, Q. and Gu, G. (2007). Hydrolysis and acidification of waste activated sludge at different pHs, Water Res., 41, 683-689. 

  7. Cordell, D. and White, S. (2011). Peak phosphorus: Clarifying the key issues of a vigorous debate about long-term phosphorus security, Sustainability, 3(10), 2027-2049. 

  8. Crocetti, G., Hugenholtz, P., Bond, P., Schuler, A., Keller, J., Jenkins, D. and Blackall, L. (2000). Identification of polyphosphate-accumulating organisms and design of 16S rRNA-directed probes for their detection and quantitation, Appl. Environ. Microbiol., 66(3), 1175-82. 

  9. Crocetti, G., Banfield, J., Keller, J. Philip, L. Bond, P. and Blackall, L. (2002). Glycogen-accumulating organisms in laboratory-scale and full-scale wastewater treatment processes, Microbiol., 148, 3353-3364. 

  10. Fischer, F., Bastian, C., Happe, M., Mabillard, E., Schmidt, N. (2011). Microbial fuel cell enables phosphate recovery from digested sewage sludge as struvite, Bioresour. Technol., 102(10), 5824-5830. 

  11. Gaterell, M., Gay, R., Wilson, R., Gochin, R. and Lester, J. (2000). An economic and environmental evaluation of the opportunities for substituting phosphorus recovered from wastewater treatment works in existing UK fertiliser markers, Environ. Technol., 21(9), 1067-1084. 

  12. Hagino, T., Koga, D. and Tsukui, R. (2014). Phosphorus recovery from sewage and high efficiency sludge dewatering - Toward the development of a self-supporting phosphorus recovery procss, Ebara Eng. Review, 243, 9-14. 

  13. Hesselmann, R., Werlen, C., Hahn, D., van der Meer J. and Zehnder, A. (1999). Enrichment, phylogenetic analysis and detection of a bacterium that performs enhanced biological phosphate removal in activated sludge, Syst. Appl. Microbiol., 22(3), 454-65. 

  14. Hirota, R., Kuroda, A., Kato, J. and Ohtake, H. (2010). Bacterial phosphate metabolism and its application to phosphorus recovery and industrial bioprocesses, J. Biosci. Bioeng., 109, 423-432. 

  15. Kong, Y., Nielsen, J. and Nielsen, P. (2005). Identity and ecophysiology of uncultured actinobacterial polyphosphate-accumulating organisms in full-scale enhanced biological phosphorus removal plants, Appl. Environ. Microbiol., 71(7), 4076-85. 

  16. Kuroda, A., Takiguchi, N., Gotanda, T., Nomura, K., Kato, J., Ikeda, T. and Ohtake, H. (2002). A simple method to release polyphosphate from activated sludge for phosphorus reuse and recycling, Biotechnol. Bioeng., 78(3), 332-338. 

  17. Liao, P., Wong, W. and Lo, K. (2005). Release of phosphorus from sewage sludge using microwave technology, J. Environ. Eng. Sci., 4, 77-81. 

  18. Lin, L., Yuan, S., Chen, J., Xu, Z. and Lu, X. (2009). Removal of ammonia nitrogen in wastewater by microwave radiation, J. Hazard. Mater., 161, 1063-1068. 

  19. Luz, E. and Yoav, B. (2004). Recent advances in removing phosphorus from wastewater and its future use as fertilizer, Water Res., 38(19), 4222-4246. 

  20. Marchi, A., Geerts, S., Weemaes, M., Schiettecatte, W. and Vanhoof, C. (2017). Full-scale phosphorus recovery from digested waste water sludge in belgium - Part I: Technical achievements and challenges, Water Sci. Technol., 71(4), 487-494. 

  21. Mathew, M., Kingsbury, P., Takagi, S. and Brown, W. (1982). A new struvite-type compound, magnesium sodium phosphate heptahydrate, Acta Crystallization, B38, 40-44. 

  22. McCarty, P.L. (1972). Stoichiometry of Biological Reactions, International Conference Toward a Unified Concept of Biological waste treatments Design. 

  23. Ministry of Environment, Sewage statistics (2015). http://www.me.go.kr/home/web/policy_data/read.do?menuId10264&seq6937 (October 22, 2020) 

  24. Santinelli, M., Eusebi, A., Santini, M. and Battistoni, P. (2013). Struvite crystallization from anaerobic digester supernatants: Influence on the ammonia efficiency of the process variables and the chemicals dosage modality, Chem. Eng. Trans., 32, 2047-2052. 

  25. Seviour, R., Mino, T. and Onuki, M. (2003). The microbiology of biological phosphorus removal in activated sludge systems, FEMS Microbiol. Rev., 27, 99-127. 

  26. Stolzenburg, P., Capdevielle, A., Teychene, S. and Biscans, B. (2015). Struvite precipitation with MgO as a precursor: Application to wastewater treatment, Chem. Eng. Sci., 133, 9-15. 

  27. Tchobanoglous, G., Burton, F. and Stensel, H. (2004). Wastewater Engineering, Treatment and Reuse. 4th Edn, McGraw-Hill, Singapore. 

  28. Wingender, J., Neu, T. and Flemming, H. (1999). Microbial Extracellular Polymeric Substances: Characterization, Structure and Function. 1st Edn, Springer-Verlag, Berlin, Germany. 

  29. Wong, M., Tan, F., Ng, W. and Liu, W. (2004). Identification and occurrence of tetrad-forming Alphaproteobacteria in anaerobic-aerobic activated sludge processes, Microbiol., 150(11), 3741-3748. 

  30. Xu, Y., Hu, H., Liu, J., Luo, J., Qian, G. and Wang, A. (2015). pH dependent phosphorus release from waste activated sludge: contributions of phosphorus speciation, Chem. Eng. J., 267, 260-265. 

  31. Zhang, H., Fan, W., Wang, Y., Sheng, G., Xia, C., Zeng, R. and Yu, H. (2013). Species of phosphorus in the extracellular polymeric substances of EBPR sludge, Bioresour. Technol., 142, 714-718. 

저자의 다른 논문 :

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로