최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Composites research = 복합재료, v.34 no.1, 2021년, pp.63 - 69
신하은 (Institute of Advanced Composite Materials, Korea Institute of Science and Technology) , 김채빈 (Department of Polymer Science and Engineering, Pusan National University)
In order to develop an integrated heat dissipating material and gas barrier film for electronics, new polymer was designed and synthesized for preparing composites containing hexagonal boron nitride (hBN) filler. Depending on the size and content of the hBN filler, both thermal conductivity and oxyg...
* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.
Lu, H., Yao, Y., Huang, W.M., Leng, J., and Hui, D., "Significantly Improving Infrared Light-induced Shape Recovery Behavior of Shape Memory Polymeric Nanocomposite via a Synergistic Effect of Carbon Nanotube and Boron Nitride," Composites Part B: Engineering, Vol. 62, 2014, pp. 256-261.
Jiang, Q., Wang, X., Zhu, Y., Hui, D., and Qiu, Y., "Mechanical, Electrical and Thermal Properties of Aligned Carbon Nanotube/Polyimide Composites", Composites Part B: Engineering, Vol. 56, 2014, pp. 408-412.
Kim, C.B., Jeong, K.B., Yang, B.J., Song, J.-W., Ku, B.-C., Lee, S., Lee, S.-K., and Park, C., "Facile Supramolecular Processing of Carbon Nanotubes and Polymers for Electro-mechanical Sensors", Angewandte Chemie International Edition, Vol. 56, No. 51, 2017, pp. 16180-16185.
Shin, H., Ahn, S., Kim, D., Lim, J.K., Kim, C.B., and Goh, M., "Recyclable Thermoplastic Hexagonal Boron Nitride Composites with High Thermal Conductivity," Composites Part B: Engineering, Vol. 163, 2019, pp. 723-729.
Lee, J., Hwang, S., Lee, S.-K., Ahn, S., Jang, S.G., You, N.-H., Kim, C.B., and Goh, M., "Optimizing Filler Network Formation in Poly(hexahydrotriazine) for Realizing High Thermal Conductivity and Low Oxygen Permeation," Polymer, Vol. 179, 2019, pp. 121639.
Hill, R.F., and Supancic, P.H., "Thermal Conductivity of Plateletfilled Polymer Composites," Journal of American Ceramic Society, Vol. 85, No. 4, 2002, pp. 851-857.
Song, W.L., Wang, P., Cao, L., Anderson, A., Meziani, M.J., Farr, A.J., and Sun, Y.-P., "Polymer/Boron Nitride Nanocomposite Materials for Superior Thermal Transport Performance," Angewandte Chemie International Edition, Vol. 51, No. 26, 2012, pp. 6498-6501.
Zhu, H., Li, Y., Fang, Z., Xu, J., Cao, F., Wan, J., Preston, C., Yang, B., and Hu, L., "Highly Thermally Conductive Papers with Percolative Layered Boron Nitride Nanosheets," ACS Nano, Vol. 8, No. 4, 2014, pp. 3606-3613.
Shtein, M., Nadiv, R., Buzaglo, M., and Regev, O., "Graphene-based Hybrid Composites for Efficient Thermal Management of Electronic Devices," ACS Applied Materials and Interfaces, Vol. 7, No. 42, 2015, pp. 23725-23730.
Shtein, M., Nadiv, R., Buzaglo, M., Kahil, K., and Regev, O., "Thermally Conductive Graphene-polymer Composites: Size, Percolation, And Synergy Effects," Chemistry of Materials, Vol. 27, No. 6, 2015, pp. 2100-2106.
Yu, A., Ramesh, P., Sun, X., Bekyarova, E., Itkis, M.E., and Haddon, R.C., "Enhanced Thermal Conductivity in a Hybrid Graphite Nanoplatelet-carbon Nanotube Filler for Epoxy Composites," Advanced Materials, Vol. 20, No. 24, 2008, pp. 4740-4744.
Ata, S., Kobashi, K., Yumura, M., and Hata, K., "Mechanically Durable and Highly Conductive Elastomeric Composites from Long Single-Walled Carbon Nanotubes Mimicking the Chain Structure of Polymers," Nano Letters, Vol. 12, No. 6, 2012, pp. 2710-2716.
Lin, T.-H., Huang, W.-H., Jun, I.-K., and Jiang, P., "Bioinspired Assembly of Surface-Roughened Nanoplatelets," Journal of Colloid and Interface Science, Vol. 344, No. 2, 2010, pp. 272-278.
Lin, Z., Liu, Y., Raghavan, S., Moon, K.S., Sitaraman, S.K., and Wong, C.P., "Magnetic Alignment of Hexagonal Boron Nitride Platelets in Polymer Matrix: Toward High Performance Anisotropic Polymer Composites for Electronic Encapsulation," ACS Applied Materials & Interfaces, Vol. 5, No. 15, 2013, pp. 7633-7640.
Yuan, C., Duan, B., Li, L., Xie, B., Huang, M., and Luo, X., "Thermal Conductivity of Polymer Based Composites with Magnetic Aligned Hexagonal Boron Nitride Platelets," ACS Applied Materials & Interfaces, Vol. 7, No. 23, 2015, pp. 13000-13006.
Yousefi, N., Gudarzi, M.M., Zheng, Q.B., Aboutalebi, S.H., Sharif, F., and Kim, J.K., "Self-alignment and High Electrical Conductivity of Ultralarge Graphene Oxide-Polyurethane Nanocomposites," Journal of Materials Chemistry, Vol. 22, No. 25, 2012, pp. 12709-12717.
Liang, Q., Yao, X., Wang, W., Liu, Y., and Wong, C.P., "A Three-dimensional Vertically Aligned Functionalized Multilayer Graphene Architecture: An Approach for Graphene-based Thermal Interfacial Materials," ACS Nano, Vol. 5, No. 3, 2011, pp. 2392-2401.
Erb, R.M., Libanori, R., Rothfuchs, N., and Studart, A.R., "Composites Reinforced in Three Dimensions by using Low Magnetic Fields," Science, Vol. 355, No. 6065, 2012, pp. 199-204.
Erb, R.M., Son, H.S., Samanta, B., Rotello, V.M., and Yellen, B.B., "Magnetic Assembly of Colloidal Superstructures with Multipole Symmetry," Nature, Vol. 457, No. 7232, 2009, pp. 999-1002.
Lanticse, L.J., Tanabe, Y., Matsui, K., Kaburagi, Y., Suda, K., Hoteida, M., Endo, M., and Yasuda, E., "Shear-induced Preferential Alignment of Carbon Nanotubes Resulted in Anisotropic Electrical Conductivity of Polymer Composites," Carbon, Vol. 44, No. 14, 2006, pp. 3078-3086.
Terao, T., Zhi, C., Bando, Y., Mitome, M., Tang, C., and Golberg, D., "Alignment of Boron Nitride Nanotubes in Polymeric Composite Films for Thermal Conductivity Improvement," Journal of Physical Chemistry C, Vol. 114, No. 10, 2010, pp. 4340-4344.
Jin, L., Bower, C., and Zhou, O., "Alignment of Carbon Nano-tubes in a Polymer Matrix by Mechanical Stretching," Applied Physics Letters, Vol. 73, No. 9, 1998, pp. 1197-1199.
Haggenmueller, R., Gommans, H.H., Rinzler, A.G., Fischer, J.E., and Winey, K.I., "Aligned Single Wall Carbon Nanotubes in Composites by Melt Processing Methods," Chemical Physics Letters, Vol. 330, No. 3-4, 2000, pp. 219-225.
Angell, C.A., "Formation of Glasses From Liquids and Biopolymers," Science, Vol. 267, No. 5206, 1995, pp. 1924-1935.
Sato, K., Horibe, H., Shirai, T., Hotta, Y., Nakano, H., Nagai, H., Mitsuishi, K., and Watari, K., "Thermally Conductive Composite Films of Hexagonal Boron Nitride and Polyimide with Affinity-enhanced Interfaces," Journal of Material Chemistry, Vol. 20, No. 14, 2010, pp. 2749-2752.
Xu, Y., and Chung, D.D.L., "Increasing the Thermal Conductivity Of Boron Nitride and Aluminum Nitride Particle EpoxyMatrix Composites by Particle Surface Treatments," Composites Interfaces, Vol. 7, No. 4, 2000, 243-256.
Tanimoto, M., Yamagata, T., Miyata, K., and Ando, S., "Anisotropic Thermal Diffusivity of Hexagonal Boron Nitride-filled Polyimide Films: Effects of Filler Particle Size, Aggregation, Orientation, and Polymer Chain Rigidity," ACS Applied Materials & Interfaces, Vol. 5, No. 10, 2013, pp. 4374-4382.
Garcia, J.M., Jones, G.O., Virwani, K., McCloskey, B.D., Boday, D.J., ter Huurne, G.M., Horn, H.W., Coady, D.J., Bintaleb, A.M., Alabdulrahman, A.M.S., Alsewailem, F., Almegren, H.A.A., and Hedrick, J.L., "Recyclable, Strong Thermosets and Organogels via Paraformaldehyde Condensation with Diamines," Science, Vol. 344, No. 6185, 2014, pp. 732-735.
Goh, M., Shin, H., and Kim, C.B., "Manipulating Bond Exchange Rates in Vitrimer-Hexagonal Boron Nitride Nanohybrids via Heat Capacity Enhancement," Journal of Applied Polymer Science, Vol. 138, No. 12, 2021, pp. 50079.
Shin, H., Kim, C.B., Ahn, S., Kim, D., Lim, J.K., and Goh, M., "Recyclable Polymeric Composite with High thermal Conductivity," Composites Research, Vol. 32, No. 6, 2019, pp. 319-326.
Nielsen, L.E., "Generalized Equation for the Elastic Moduli of Composite Materials," Journal of Applied Physics, Vol. 41, No. 11, 1970, pp. 4626-4627.
Kim, C.B., Lee, J., Cho, J., and Goh, M., "Thermal Conductivity Enhancement of Reduced Graphene Oxide via Chemical Defect Healing for Efficient Heat Dissipation," Carbon, Vol. 139, 2018, pp. 386-392.
Kang, D.-G., Kim, N., Park, M., Nah, C., Kim, J.S., Lee, C.R., Kim, Y., Kim, C.B., Goh, M., and Jeong, K.U., "Interfacial Engineering for the Synergistic Enhancement of Thermal Conductivity of Discotic Liquid Crystal Composites," ACS Applied Materials & Interfaces, Vol. 10, No. 4, 2018, pp. 3155-3159.
Jeong, I., Kim, C.B., Kang, D.-G., Jeong, K.-U., Jang, S.G., You, N.-H., Ahn, S., Lee, D.-S., and Goh, M., "Liquid Crystalline Epoxy Resin with Improved Thermal Conductivity by Intermolecular Dipole-Dipole Interactions," Journal of Polymer Science Part A: Polymer Chemistry, Vol. 57, No. 6, 2019, pp. 708-715.
Zhang, Y., Choi, J.R., and Park, S.-J., "Interlayer Polymerization in Amine-terminated Macromolecular Chain-grafted Expanded Graphite for Fabricating Highly Thermal Conductive and Physically Strong Thermoset Composites for Thermal Management Applications," Composites Part A: Applied Science and Manufacturing, Vol. 109, 2018, pp. 498-506.
Zhang, Y., Choi, J.R., and Park, S.-J., "Enhancing The Heat and Load Transfer Efficiency by Optimizing The Interface of Hexagonal Boron Nitride/Elastomer Nanocomposites for Thermal Management Applications," Polymer, Vol. 143, 2018, pp. 1-9.
Zhang, Y., Heo, Y.-J., Son, Y.-R., In, I., An, K.-H., Kim, B.-J., and Park, S.-J., "Recent Advanced Thermal Interfacial Materials: A Review of Conducting Mechanisms and Parameters of Carbon Materials," Carbon, Vol. 142, 2019, pp. 445-460.
Ha, H., Park, J., Ando, S., Kim, C.B., Nagai, K., Freeman, B.D., and Ellison, C.J., "Gas Permeation and Selectivity of Poly(Dimethylsiloxane)/Graphene Oxide Composite Elastomer Membranes," Journal of Membrane Science, Vol. 518, 2016, pp. 131-140.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.