$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

선형 점탄성 해석
Linear Viscoelastic Identification

한국섬유공학회지 = Textile science and engineering, v.58 no.1, 2021년, pp.1 - 16  

권미경 (대구경북과학기술원 바이오융합연구부) ,  조광수 (경북대학교 고분자공학과)

Abstract AI-Helper 아이콘AI-Helper

With an increase in the awareness of polymer viscoelasticity, several researchers in the textile industry have conducted rheological experiments to investigate the polymeric materials they deal with. However, the experimental results can be interpreted meaningfully when the polymeric materials are p...

주제어

참고문헌 (105)

  1. K. S. Cho, "Viscoelasticity of Polymers", Springer, 2016. 

  2. K. S. Cho, M. K. Kwon, J. Lee, and S. Kim, "Mathematical Analysis on Linear Viscoelastic Identification", Kor.-Aust. Rheol. J., 2017, 29, 249-268. 

  3. J. Ren, A. S. Silva, and R. Krishnamoorti, "Linear Viscoelasticity of Disordered Polystyrene-Polyisoprene Block Copolymer Based Layered-Silicate Nano-composites", Macromolecules, 2000, 33, 3739-3746. 

  4. Y. Song, Y. Tan, and Q. Zheng, "Linear Rheology of Carbon Black Filled Polystyrene", Polymer, 2017, 112, 35-42. 

  5. J. H. Choi, "Analytical Approxiamtion of the Relaxation Time Spectrum of Monodisperse Linear Polymer Melts", Text. Sci. Eng., 2014, 51, 207-211. 

  6. J. H. Choi, "Analytical Approximation of Relaxation Time Spectrum from Dynamic Creep Compliance", Text. Sci. Eng., 2014, 51, 230-234. 

  7. K. S. Cho, "Which is More Informative between Creep and Relaxation Experiments?", Kor.-Aust. Rheol. J., 2017, 29, 79-86. 

  8. R. Fulchiron, V. Veney, P. Cassagnau, A. Michel, P. Levoir, and J. Aubard, "Deconvolution of Polymer Met Stress Relaxation by the Pade-Laplace Method", J. Rheol., 1993, 37, 17-34. 

  9. M. Tassieri, M. Laurati, D. J. Curtis, D. W. Auhl, S. Coppola, A. Scalfati, K. Hawkins, P. R. Williams, and J. M. Cooper, "i-Rheo: Measuring the Materials' Linear Viscoelastic Properties "in a Step", J. Rheol., 2016, 60, 649-660. 

  10. J. Honerkamp, "Ill-Posed Problems in Rheology", Rheol. Acta, 1989, 28, 363-371. 

  11. J. D. Ferry, "Viscoelastic Properties of Polymers", John Wiley & Sons, 1980. 

  12. R. H. Colby, L. J. Fetters, and W. W. Graessley, "Melt Viscosity-Molecular Weight Relationship for Linear Polymers", Macromolecules, 1987, 20, 2226-2237. 

  13. K. Fuchs, C. Friedrich, and J. Weese, "Viscoelastic Properties of Narrow-Distribution Poly(methyl methacrylates)", Macromolecules, 1996, 29, 5893-5901. 

  14. M. Rubinstein and R. H. Colby, "Polymer Physics", Oxford University Press, 2003. 

  15. L. R. G. Treloar, "The Physics of Rubber Elasticity", Oxford University Press, 1975. 

  16. L. J. Fetters, D. J. Lohse, D. Richter, T. A. Witten, and A. Zirkel, "Connection between Polymer Molecular Weight, Density, Chain Dimensions, and Melt Viscoelastic Properties", Macromolecules, 1994, 27, 4639-4647. 

  17. K. S. Cho, K. H. Ahn, and S. J. Lee, "Simple Method for Determining the Critical Molecular Weight from the Loss Modulus", J. Polym. Sci. Part B: Polym. Phys., 2004, 42, 2724-2729. 

  18. R. H. Colby, L. J. Fetters, W. G. Funk, and W. W. Graessley, "Effect of Concentration and Thermodynamic Interaction on the Viscoelastic Properties of Polymer Solutions", Macromolecules, 1991, 24, 2873-3882. 

  19. A. Schausberger, G, Schindlauer, and H. Janeschitz-Kriegl, "Linear Elasto-Viscous Properties of Molten Standard Polystyrenes. I. Presentation of Complex Molduli; Role of Short Range Structural Parameters", Rheol. Acta, 1985, 24, 220-270. 

  20. M. L. Williams, R. F. Landel, and J. H. Ferry, "The Temperature Dependence of Relaxation Mechanisms in Amorphous Polymers and Other Glass-forming Liquids", J. Am. Chem. Soc., 1955, 77, 3701-3707. 

  21. A. K. Doolittle, "Studies in Newtonian Flow. II. The Dependence of the Viscosity of Liquids on Free-Space", J. Appl. Phys., 1951, 22, 1471-1475. 

  22. A. K. Doolittle, "Studies in Newtonian Flow. III. The Dependence of the Viscosity of Liquids on Molecular Weight and Free Space", J. Appl. Phys., 1952, 23, 236-239. 

  23. J.-E. Bae, K. S. Cho, K. H. Seo, and D.-G. Kang, "Application of Geometric Algorithm of Time-Temperature Superposition to Linear Viscoelasticity of Rubber Compounds", Kor.-Aust. Rheol. J., 2011, 23, 81-87. 

  24. C. D. Han and J. K. Kim, "On the Use of Time-Temperature Superposition in Multicomponent/Multiphase Polymer Systems", Polymer, 1993, 34, 2533-2539. 

  25. G. Marin and W. W. Graessley, "Viscoelastic Properties of High Molecular Weight Polymers in the Molten State I. Study of Narrow Molecular Weight Distribution Samples", Rheol. Acta, 1977, 16, 527-533. 

  26. M. Doi and S. F. Edwards, "The Theory of Polymer Dynamics", Clarendon Press, 1986. 

  27. H. Watanabe, "Viscoelasticity and Dynamics of Entangled Polymers", Prog. Polym. Sci., 1999, 24, 1253-1403. 

  28. A. E. Likhtman and T. C. B. McLeish, "Quantitative Theory for Linear Dynamics of Linear Entangled Polymers", Macromolecules, 2002, 35, 6332-6343. 

  29. P. E. Rouse, "A Theory of the Linear Viscoelastic Properties of Dilute Solutions of Coiling Polymers", J. Chem. Phys., 1953, 21, 1272-1280. 

  30. J. des Cloizeaux, "Double Reptation vs. Simple Reptation in Polymer Melts", Europhys. Lett., 1988, 5, 437-442. 

  31. C. Tsenoglou, "Molecular Weight Polydisperity Effects on the Viscoelasticity of Entangled Linear Polymers", Macromolecules, 1991, 24, 1762-1767. 

  32. S. H. Wasserman and W. W. Graessley, "Effects of Polydispersity on Linear Viscoelasticity in Entangled Polymer Melts", J. Rheol., 1992, 36, 543-572. 

  33. D. W. Mead, "Determination of Molecular Weight Distribution of Linear Flexible Polymers from Linear Viscoelastic Material Functions", J. Rheol., 1994, 38, 1797-1827. 

  34. J. K. Jackson and H. H. Winter, "Entanglement and Flow Behavior of Bidisperse Blends of Polystyrene and Polybutadiene", Macromolecules, 1995, 28, 3146-3155. 

  35. M. R. Nobile, F. Cocchini, and J. V. Lawler, "On the Stability of Molecular Weight Distributions as Computed from the Flow Curves of Polymer Melts", J. Rheol., 1996, 40, 363-382. 

  36. C. Carrot and J. Guillet, "From Dynamic Moduli to Molecular Weight Distribution; A Study pf Various Polydisperse Linear Polymers", J. Rheol., 1997, 41, 1203-1220. 

  37. R. S. Anderssen and D. W. Mead, "Theoretical Derivation of Molecular Weight Scaling for Rheological Parameters", J. Non-Newtonian Fluid Mech., 1998, 76, 299-306. 

  38. D. Maier, A. Eckstein, C. Friedrich, and J. Honerkamp, "Evaluation of Models Combining Rheological Data with the Molecular Weight Distribution", J. Rheol., 1998, 42, 1153-1173. 

  39. W. Thimm, C. Friedrich, M. Marth, and J. Honerkamp, "An Analytical Relation between Relaxation Time Spectrum and Molecular Weight Distribution", J. Rheol., 1999, 43, 1663-1672. 

  40. W. Thimm, C. Friedrich, T. Roths, and J. Honerkamp, "Molecular Weight Distribution Dependent Kernels in Generalized Mixing Rules", J. Rheol., 2000, 44, 1353-1361. 

  41. E. van Ruymbeke, R. Keunings, and C. Bailly, "Determination of the Molecular Weight Distribution of Entangled Linear Polymers from Linear Viscoelastic Data", J. Non-Newtonian Fluid Mech., 2002, 105, 153-175. 

  42. C. Pattamaprom, R. G. Larson, and A. Sirivat, "Determining Polymer Molecular Weight Distributions from Rheological Properties Using the Dual-Constraint Model", Rheol. Acta, 2008, 47, 689-700. 

  43. J. W. Park, J. Yoon, J. Cha, and H. S. Lee, "Determination of Molecular Weight Distribution and Composition Dependence of Monomeric Friction Factors from the Stress Relaxation of Ultrahigh Molecular Weight Polyethylene Gels", J. Rheol., 2015, 59, 1173-1189. 

  44. H. Wang, G. Gurau, and R. D. Rogers, "Ionic Liquid Processing of Cellulose", Chem. Soc. Rev., 2012, 41, 1519-1537. 

  45. M. K. Kwon, J. Lee, K. S. Cho, S. J. Lee, H. C. Kim, S. W. Jeong, and S. G. Lee, "Scaling Analysis on the Linear Viscoelasticity of Cellulose 1-Ethyl-3-Methyl Imidazolium Acetate Solutions", Kor.-Aust. Rheol. J., 2019, 31, 123-139. 

  46. E. J. Regalado, J. Selb, and F. Candau, "Viscoelastic Behavior of Semidilute Solutions of Multi Sticker Polymer Chains", Macromolecules, 1999, 32, 8501-8588. 

  47. Q. L. Kuang, J.-C. Zhao, Y.-H. Niu, J. Zhang, and Z.-G. Wang, "Cellulose in an Ionic Liquid: The Rheological Properties of the Solutions Spanning the Dilute and Semidilute Regimes", J. Phys. Chem. B, 2008, 112, 10234-10240. 

  48. K. S. Cho, J. W. Kim, J.-E. Bae, J. H. Youk, H. J. Jeon, and K.-W. Song, "Effect of Temporary Network Structure on Linear and Nonlinear Viscoelasticity of Polymer Solutions, Kor.-Aust. Rheol. J., 2015, 27, 151-161. 

  49. G. Odian, "Principles of Polymerization", Wiley, 2004. 

  50. J.-E. Bae, J. S. Choi, and K. S. Cho, "An Empirical Model for the Viscosity of Reactive Polymeric Fluids", Macromol. Res., 2018, 26, 484-492. 

  51. J. M. Castro and C. W. Macosko, "Kinetics and Rheology of Typical Polyurethane Reaction Injection Molding Systems", Soc. Plast. Eng. Tech. Pap., 1980, 26, 434-438. 

  52. I. C. Choy and D. J. Plazek, "The Physical Properties of Bisphenol-A-based Epoxy Resins during and after Curing", J. Polym. Sci. Part B: Polym. Phys., 1986, 24, 1303-1320. 

  53. H. H. Winter and F. Chambon, "Analysis of Linear Viscoelasticity of a Crosslinking Polymer at the Gel Point", J. Rheol., 1986, 30, 367-382. 

  54. H. H. Winter, "Can the Gel Point of a Cross-linking Polymer be Detected by the G'-G'' Crossover?" Polym. Eng. Sci., 1987, 27, 1688-1702. 

  55. N. Kiuna, C. J. Lawrence, Q. P. V. Fontana, P. E. Lee, T. Selerland, and P. D. M. Spelt, "A Model for Resin Viscosity during Cure in the Resin Transfer Moulding Process", Comps. Part A: Appl. Sci., 2002, 33, 1497-1503. 

  56. M. Ivankovic, L. Incarnato, J. M. Kenny, and L. Nicolais, "Curing Kinetics and Chemorheology of Epoxy/Anhydride System", J. Appl. Polym. Sci., 2003, 90, 3012-3019. 

  57. D. J. Plazek, N. Raghupathi, and S. J. Orbon, "Determination of Dynamic Storage and Loss Compliances from Creep Data", J. Rheol., 1979, 23, 477-488. 

  58. D. W. Mead, "Numerical Interconversion of Linear Viscoelastic Material Functions", J. Rheol., 1994, 38, 1769-1795. 

  59. A. J. Eckstein, J. Suhm, C. Friedrich, R.-D. Maier, J. Sassmannshausen, M. Bochmann, and R. Mulhaupt, "Determination of Plateau Moduli and Entanglement Molecular Weights of Isotactic, Syndiotactic, and Atactic Polypropylenes Synthesized with Metallocene Catalysts", Macromolecules, 1998, 31, 1335-1340. 

  60. S. W. Park and Y. R. Kim, "Interconversion between Relaxation Modulus and Creep Compliance for Viscoelastic Solids", J. Mater. Civ. Eng., 1999, 11, 76-82. 

  61. C. He, P. Wood-Adams, and J. M. Dealy, "Broad Frequency Range Characterization of Molten Polymers", J. Rheol., 2004, 48, 711-724. 

  62. R. S. Anderssen, A. R. Davies, and F. R. de Hoog, "On the Interconversion Integral Equation for Relaxation and Creep", ANZIAM J., 2007, 48, C346-C363. 

  63. R. S. Anderssen, A. R. Davies, and F. R. de Hoog, "On the Sensitivity of Interconversion between Relaxation and Creep", Rheol. Acta, 2008, 47, 159-167. 

  64. R. M. L. Evans, M. Tassieri, D. Auhl, and T. A. Waigh, "Direct Conversion of Rheological Compliance Measurements into Storage and Loss Moduli", Phys. Rev. E, 2009, 80, 012501. 

  65. C. Baravian and D. Quemada, "Using Instrumental Inertia in Controlled Stress Rheometry", Rheol. Acta, 1998, 37, 223-233. 

  66. C. Baravian, G. Benbelkacem, and F. Caton, "Unsteady Rheometry: Can We Characterize Weak Gels with a Controlled Stress Rheometer", Rheol. Acta, 2007, 46, 577-581. 

  67. R. H. Ewoldt and G. H. McKinley, "Creep Ringing in Rheometry or How to Deal with Oft-Discarded Data in Step Stress Test", Rheol. Bull., 2007, 76, 4-6. 

  68. G. Benmouffok-Benbelkacem, F. Caton, C. Baravian, and S. Skali-Lami, "Non-linear Viscoelasticity and Temporal Behavior of Typical Yield Stress Fluids: Carbopol, Xanthan and Ketchup", Rheol. Acta, 2010, 49, 305-314. 

  69. A. Jaishankar, V. Sharma, and G. H. McKinley, "Interfacial Viscoelasticity, Yielding and Creep Ringing of Globular Protein-Surfactant Mixtures", Soft Matter, 2011, 7, 7623-7634. 

  70. M. Kim, J.-E. Bae, N. Kang, and K. S. Cho, "Extraction of Viscoelastic Functions from Creep Data with Ringing", J. Rheol., 2015, 59, 237-252. 

  71. A. M. Cohen, "Numerical Methods for Laplace Transform Inversion", Sprnger, 2007. 

  72. M. Kwon, S. H. Lee, S. G. Lee, and K. S. Cho, "Direct Conversion of Creep Data to Dynamic Moduli", J. Rheol., 2016, 60, 1181-1197. 

  73. S. J. Choi and W. R. Schowalter, "Rheological Properties of Nondilute Suspensions of Deformable Particles", Phys. Fluids, 1975, 18, 420-427. 

  74. M. Doi and T. Ohta, "Dynamics and Rheology of Complex Interfaces. I", J. Chem. Phys., 1991, 95, 1242-1248. 

  75. J. F. Palierne, "Linear Rheology of Viscoelastic Emulsions with Interfacial Tension", Rheol. Acta, 1990, 29, 204-214. 

  76. H. Gramespacher and J. Meissner, "Interfacial Tension between Polymer Melts Measured by Shear Oscillations of Their Blends", J. Rheol., 1992, 36, 1127-1141. 

  77. H. M. Lee and O. O. Park, "Rheology and Dynamics of Immiscible Polymer Blends", J. Rheol., 1994, 38, 1405-1425. 

  78. M. K. Kwon and K. S. Cho, "Analysis of the Palierne Model by Relaxation Time Spectrum", Kor.-Aust. Rheol. J., 2016, 28, 23-31. 

  79. H. Jang, J. Lee, M. K. Kwon, K. H. Seo, and K. S. Cho, "Analysis of PLA Blends Using Weighted Relaxation Spectrum", Fiber. Polym., 2021, in press. 

  80. K. Atkinson and W. Han, "Theoretical Numerical Analysis", Springer, 2001. 

  81. S. H. Lee, J.-E. Bae, and K. S. Cho, "Determination of Continuous Relaxation Spectrum Based on the FuossKirkwood Relation and Logarithmic Orthogonal PowerSeries Approximation", Kor.-Aust. Rheol. J., 2017, 29, 115-127. 

  82. J.-E. Bae and K. S. Cho, "Logarithmic Method for Continuous Relaxation Spectrum and Comparison with Previous Methods", J. Rheol., 2015, 59, 1081-1112. 

  83. S. Kim, J. Lee, S. Kim, and K. S. Cho, "Application of Monte Carlo Method to Nonlinear Regression of Rheological Data", Kor.-Aust. Rheol. J., 2018, 30, 21-28. 

  84. E. Aarts and J. Korst, "Simulated Annealing and Boltzmann Machines: A Stochastic Approach to Combinatorial Optimization and Neural Computing", Wiley, 1989. 

  85. J. Honerkamp and J. Weese, "A Note on Estimating Mastercurves", Rheol. Acta, 1993, 32, 57-64. 

  86. K. S. Cho, "Geometric Interpretation of Time-Temperature Superposition", Kor.-Aust. Rheol. J., 2009, 21, 13-16. 

  87. K. S. Cho and J.-E. Bae, "Geometric Insights on Viscoelasticity: Symmetry, Scaling and Superposition of Viscoelastic Functions", Kor.-Aust. Rheol. J., 2011, 23, 49-58. 

  88. M. Gergesova, B. Zupancic, I. Saprunov, and I. Emri, "The Closed Form t-T-p Shifting (CFS) Algorithm", J. Rheol., 2011, 55, 1-16. 

  89. M. Gergesova, I. Saprunov, and I. Emri, "Closed-Form Solution for Horizontal and Veritcal Shiftings of Viscoelastic Material Functions in Frequency Domain", Rheol. Acta, 2016, 55, 351-364. 

  90. R. M. Fuoss and J. G. Kirkwood, "Electrical Properties of Solids. VIII. Dipole Moments in Polyvinyl Chloride-Diphenyl Systems", J. Am. Chem. Soc., 1941, 63, 385-394. 

  91. A. R. Davies and R. S. Anderssen, "Sampling Localization in Determining the Relaxation Spectrum", J. Non-Newtonian Fluid Mech., 1997, 73, 163-179. 

  92. J. Honerkamp and J. Weese, "Determination of the Relaxation Spectrum by a Regularization Method", Macromolecules, 1989, 22, 4372-4377. 

  93. J. Honerkamp and J. Weese, "A Nonlinear Regularization Method for the Calculation of Relaxation Spectra", Rheol. Acta, 1993, 32, 65-73. 

  94. C. J. Brabec and A. Schausberger, "An Improved Algorithm for Calculating Relaxation Time Spectra from Material Functions of Polymers with Monodisperse and Bimodal Molar Mass Distribution", Rheol. Acta, 1995, 34, 397-405. 

  95. F. J. Stadler and C. Bailly, "A New Method for the Calculation of Continuous Relaxation Spectra from Dynamic-Mechanical Data", Rheol. Acta, 2009, 48, 33-49. 

  96. K. S. Cho and G. W. Park, "Fixed-point Iteration for Relaxation Spectrum from Dynamic Mechanical Data", J. Rheol., 2013, 57, 647-678. 

  97. K. S. Cho, "Power Series Approximations of Dynamic Moduli and Relaxation Spectrum", J. Rheol., 2013, 57, 679-697. 

  98. M. Baumgartel and H. H. Winter, "Determination of Discrete Relaxation and Retardation Time Spectra from Dynamic Mechanical Data", Rheol. Acta, 1989, 28, 511-519. 

  99. N. W. Tschoegl and I. Emri, "Generating Line Spectra from Experimental Responses. III. Interconversion between Relaxation and Retardation Behavior", Intern. J. Polymeric Mater., 1992, 18, 117-127. 

  100. M. Simhambhatla and A. I. Leonov, "The Extended Pade-Laplace Method for Efficient Discretization of Linear Viscoelastic Spectra", Rheol. Acta, 1993, 32, 589-600. 

  101. A. Y. Malkin and V. V. Kuznetsov, "Linearization as a Method for Determining Parameters of Relaxation Spectra", Rheol. Acta, 2000, 37, 379-383. 

  102. E. A. Jensen, "Determination of Discrete Relaxation Spectra Using Simulated Annealing", J. Non-Newtonian Fluid Mech., 2002, 107, 1-11. 

  103. K. S. Cho, "A Simple Method for Determination of Discrete Relaxation Time Spectrum", Macromol. Res., 2010, 18, 363-371. 

  104. A. Y. Malkin and I. Masalova, "From Dynamic Moduli via Different Relaxation Spectra to Relaxation and Creep Functions", Rheol. Acta, 2001, 40, 261-271. 

  105. J.-E. Bae and K. S. Cho, "A Systematic Approximation of Discrete Relaxation Time Spectrum from the Continuous Spectrum", J. Non-Newtonian Fluid Mech., 2016, 235, 64-75. 

저자의 다른 논문 :

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로