$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Physicochemical quality, antioxidant compounds, and activity of 'Beta Tiny' and 'TY Nonari' cherry tomatoes during storage 원문보기

한국식품과학회지 = Korean journal of food science and technology, v.53 no.1, 2021년, pp.63 - 71  

Joung, Minji (Department of Food Engineering, Dankook University) ,  Shin, Youngjae (Department of Food Engineering, Dankook University)

Abstract AI-Helper 아이콘AI-Helper

In this study, a comparative analysis was carried out between the 'Beta Tiny' and 'TY Nonari' cherry tomato cultivars harvested at the pink and red stages. Samples of the red stage were stored at room temperature for 9 days, during which physicochemical qualities, antioxidant compounds, and activiti...

주제어

표/그림 (7)

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • Cherry tomatoes in the stage were stored at room temperature for 9 days for subsequent analyses. Harvested cherry tomatoes were analyzed with respect to physicochemical quality, including the color on the day of harvest, soluble solid content (SSC), pH, titratable acidity (TA), firmness, and the lycopene content. Cherry tomatoes were snap-frozen using liquid nitrogen at −196 C, then stored in a −20 C freezer for subsequent analyses of antioxidant compounds and activities.
  • In this study, the physicochemical quality, antioxidant compounds and activities of cherry tomatoes were comparatively analyzed according to the cultivar, the ripening stage, and the storage day. The two examined cultivars both showed an increase in a* value and lycopene content with the increase in ripening stage and storage day, while the firmness was reduced.
  • However, few studies have analyzed the changes in physicochemical quality and antioxidant composition of tomatoes during storage at room temperature after purchase. This study has thus compared the physicochemical quality, antioxidant compounds and activities of two cherry tomato cultivars of Chungcheong province, based on the ripening stage upon harvest and storage days.
  • To test the antioxidant activity of the cherry tomato extract based on DPPH radical scavenging activity, the method described in Brand-Williams et al. (1995) was modified and used in this study. A 50μL of the diluted sample solution and 2, 950μL of 0.

데이터처리

  • Changes in firmness of ‘Beta Tiny’ and ‘TY Nonari’ cherry tomatoes during the storage. Different letters indicate significant differences by Duncan’s multiple range test (p<0.05).
  • Chicago, IL, USA) was used to perform the analysis of variance (ANOVA). Duncan’s multiple range test was used to test the significance of differences among the samples (p<0.05). To analyze the correlations among the mean values of each variable, Pearson’s correlation coefficient was used.
  • For the statistical analysis of each experimental result, the SPSS 20 program (SPSS Inc. Chicago, IL, USA) was used to perform the analysis of variance (ANOVA). Duncan’s multiple range test was used to test the significance of differences among the samples (p<0.
  • 05). To analyze the correlations among the mean values of each variable, Pearson’s correlation coefficient was used. The data were expressed as the mean±standard deviation from triplicate determination.
  • Polyphenol contents of ‘Beta Tiny’ and ‘TY Nonari’ cherry tomatoes. Vertical bars represent standard deviation and the different letters above the bar indicate significant differences based on Duncan’s multiple range test (p<0.05).

이론/모형

  • Total flavonoid content of the cherry tomato extract was measured using the colorimetric assay method (Shin, 2012). Briefly, 1 mL of the extract, 4mL of deionized water, and 0.
  • Total phenolic content of the cherry tomato extract was measured using the Folin-Ciocalteu colorimetric assay method (Aryal et al., 2019; Yang et al., 2019). A total of 0.
본문요약 정보가 도움이 되었나요?

참고문헌 (38)

  1. Adedeji O, Taiwo KA, Akanbi CT, Ajani R. Physicochemical properties of four tomato cultivars grown in Nigeria. J. Food Process. Preserv. 30: 79-86 (2006) 

  2. Aryal S, Baniya MK, Danekhu K, Kunwar P, Gurung R, Koirala N. Total phenolic content, flavonoid content and antioxidant potential of wild vegetables from Western Nepal. Plants 8: 96 (2019) 

  3. Bhandari SR, Lee JG. Ripening-dependent changes in antioxidants, color attributes, and antioxidant activity of seven tomato (Solanum lycopersicum L.) cultivars. J. Anal. Methods Chem. 2016: 1-13 (2016) 

  4. Bicanic D, Fogliano V, Luterotti S, Swarts J, Piani G, Graziani G. Quantification of lycopene in tomato products: comparing the performances of a newly proposed direct photothermal method and high-performance liquid chromatography. J. Sci. Food Agric. 85: 1149-1153 (2005) 

  5. Bovy A, de Vos R, Kemper M, Schijlen E, Almenar Pertejo M, Muir S, Collins G, Robinson S, Verhoeyen M, Hughes S, SantosBuelga C, van Tunen A. High-flavonol tomatoes resulting from heterologous expression of the maize transcription factor gene LC and C1. Plant Cell 14: 2509-2526 (2002) 

  6. Bovy A, Schijlen E, Hall RD. Metabolic engineering of flavonoids in tomato (Solanum lycopersicum): the potential for metabolomics. Metabolomics 3: 399 (2007) 

  7. Brand-Williams W, Cuvelier ME, Berset CLWT. Use of a free radical method to evaluate antioxidant activity. Lebensm. Wiss. Technol. 28: 25-30 (1995) 

  8. Cano A, Acosta M, Arnao MB. Hydrophilic and lipophilic antioxidant activity changes during on-vine ripening of tomatoes (Lycopersicon esculentum Mill.). Postharvest Biol. Technol. 28: 59-65 (2003) 

  9. Chen H, Zuo Y, Deng Y. Separation and determination of flavonoids and other phenolic compounds in cranberry juice by high-performance liquid chromatography. J. Chromatogr. A. 913: 387-395 (2001) 

  10. Choi SH, Kim DS, Kozukue N, Kim HJ, Nishitani Y, Mizuno M, Levin CE, Friedman M. Protein, free amino acid, phenolic, β-carotene, and lycopene content, and antioxidative and cancer cell inhibitory effects of 12 greenhouse-grown commercial cherry tomato varieties. J. Food Compos. Anal. 34: 115-127 (2014) 

  11. Chun OK, Kim DO, Smith N, Schroeder D, Han JT, Lee CY. Daily consumption of phenolics and total antioxidant capacity from fruit and vegetables in the American diet. J. Sci. Food Agric. 85: 1715-1724 (2005) 

  12. Dumas Y, Dadomo M, Di Lucca G, Grolier P. Effects of environmental factors and agricultural techniques on antioxidant content of tomatoes. J. Sci. Food Agric. 83: 369-382 (2003) 

  13. Fagundes C, Moraes K, Perez-Gago MB, Palou L, Maraschin M, Monteiro AR. Effect of active modified atmosphere and cold storage on the postharvest quality of cherry tomatoes. Postharvest Biol. Technol. 109: 73-81 (2015) 

  14. Floegel A, Kim DO, Chung SJ, Koo SI, Chun OK. Comparison of ABTS/DPPH assays to measure antioxidant capacity in popular antioxidant-rich US foods. J. Food Compos. Anal. 24: 1043-1048 (2011) 

  15. Fraser PD, Bramley PM. The biosynthesis and nutritional uses of carotenoids. Prog. Lipid Res. 43: 228-265 (2004) 

  16. Garcia-Valverde V, Navarro-Gonzalez I, Garcia-Alonso J, Periago MJ. Antioxidant bioactive compounds in selected industrial processing and fresh consumption tomato cultivars. Food Bioprocess Technol. 6: 391-402 (2013) 

  17. Giuliano G, Bartley GE, Scolnik PA. Regulation of carotenoid biosynthesis during tomato development. Plant Cell 5: 379-387 (1993) 

  18. Gomez-Romero M, Arraez-Roman D, Segura-Carretero A, Fernandez-Gutierrez A. Analytical determination of antioxidants in tomato: typical components of the Mediterranean diet. J. Sep. Sci. 30: 452-461 (2007) 

  19. Ilahy R, Hdider C, Lenucci MS, Tlili I, Dalessandro G. Antioxidant activity and bioactive compound changes during fruit ripening of high-lycopene tomato cultivars. J. Food Compos. Anal. 24: 588-595 (2011) 

  20. Johnson EJ, Qin J, Krinsky NI, Russell RM. Ingestion by men of a combined dose of β-carotene and lycopene does not affect the absorption of β-carotene but improves that of lycopene. J. Nutr. 127: 1833-1837 (1997) 

  21. Kamiloglu S, Boyacioglu D, Capanoglu E. The effect of food processing on bioavailability of tomato antioxidants. J. Berry Res. 3: 65-77 (2013) 

  22. Kavitha P, Shivashankara KS, Rao VK, Sadashiva AT, Ravishankar KV, Sathish GJ. Genotypic variability for antioxidant and quality parameters among tomato cultivars, hybrids, cherry tomatoes and wild species. J. Sci. Food Agric. 94: 993-999 (2014) 

  23. Kim JS, Kim JY, Chang YE. Physiological activities of saccharified cherry tomato gruel containing different levels of cherry tomato puree. Korean J. Food Cookery Sci. 28: 773-779 (2012) 

  24. Lee SH, Lee MS, Lee YW, Yeom HJ, Sun NK, Song KB. Effect of packaging material and storage temperature on the quality of tomato and plum fruits. Korean J. Food Preserv. 11: 135-141 (2004) 

  25. Lee SY, Yu HY, Choi DS, Hur SJ. A study on the types and growth patterns of microorganisms and quality characteristics in cherry tomatoes and head lettuces according to storage period and temperature. J. Korean Soc. Food Sci. Nutr. 26: 700-705 (2013) 

  26. Leonardi C, Ambrosino P, Esposito F, Fogliano V. Antioxidative activity and carotenoid and tomatine contents in different typologies of fresh consumption tomatoes. J. Agric. Food Chem. 48: 4723-4727 (2000) 

  27. Opara UL, Al-Ani MR, Al-Rahbi NM. Effect of fruit ripening stage on physico-chemical properties, nutritional composition and antioxidant components of tomato (Lycopersicum esculentum) cultivars. Food Bioprocess Technol. 5: 3236-3243 (2012) 

  28. Park CY, Kim YJ, Shin Y. Effects of an ethylene absorbent and 1-methylcyclopropene on tomato quality and antioxidant contents during storage. Hortic. Environ. Biotechnol. 57: 38-45 (2016) 

  29. Park KM, Kim HJ, Kim SS, Lee SB, Jeong M, Park KJ, Koo M. Effect of temperature treatment on postharvest quality of the cherry tomato (Lycopersicon esculentum var. cerasiforme). Korean J. Food Preserv. 26: 595-605 (2019) 

  30. Pek Z, Helyes L, Lugasi A. Color changes and antioxidant content of vine and post-harvest ripened tomato fruits. Hort. Sci. 45: 466-468 (2010) 

  31. Rosales MA, Cervilla LM, Sanchez-Rodriguez E, Rubio-Wilhelmi MDM, Blasco B, Rios JJ, Soriano T, Catilla N, Romero L, Ruiz JM. The effect of environmental conditions on nutritional quality of cherry tomato fruits: evaluation of two experimental Mediterranean greenhouses. J. Sci. Food Agric. 91: 152-162 (2011) 

  32. Shin Y. Correlation between antioxidant concentrations and activities of Yuja (Citrus junos Sieb ex Tanaka) and other citrus fruits. Food Sci. Biotechnol. 21: 1477-1482 (2012) 

  33. Slimestad R, Verheul MJ. Content of chalconaringenin and chlorogenic acid in cherry tomatoes is strongly reduced during postharvest ripening. J. Agric. Food Chem. 53: 7251-7256 (2005) 

  34. Slimestad R, Verheul M. Review of flavonoids and other phenolics from fruits of different tomato (Lycopersicon esculentum Mill.) cultivars. J. Sci. Food Agric. 89: 1255-1270 (2009) 

  35. Sridhar K, Charles AL. In vitro antioxidant activity of Kyoho grape extracts in DPPH and ABTS assays: Estimation methods for EC50 using advanced statistical programs. Food Chem. 275: 41-49 (2019) 

  36. Verheul MJ, Slimestad R, Tjostheim IH. From producer to consumer: greenhouse tomato quality as affected by variety, maturity stage at harvest, transport conditions, and supermarket storage. J. Agric. Food Chem. 63: 5026-5034 (2015) 

  37. Yang H, Kim YJ, Shin Y. Influence of ripening stage and cultivar on physicochemical properties and antioxidant compositions of aronia grown in South Korea. Foods 8: 598 (2019) 

  38. Zanfini A, Corbini G, La Rosa C, Dreassi E. Antioxidant activity of tomato lipophilic extracts and interactions between carotenoids and α-tocopherol in synthetic mixtures. LWT. 43: 67-72 (2010) 

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로