$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

효율적인 광전기화학적 태양에너지 전환과 저장을 위한 Solar Water Battery의 최적화
Optimization of Solar Water Battery for Efficient Photoelectrochemical Solar Energy Conversion and Storage 원문보기

청정기술 = Clean technology, v.27 no.1, 2021년, pp.85 - 92  

고현주 (부경대학교 화학공학과) ,  박이슬 (부경대학교 화학공학과)

초록
AI-Helper 아이콘AI-Helper

태양에너지를 활용하여 전력을 생산하는 시스템인 Solar water battery는 광전기화학전지와 에너지저장시스템을 결합한 것으로 추가적인 외부 전압 없이 태양에너지의 전환과 저장을 동시에 할 수 있다. Solar water battery는 광전극, 저장전극 그리고 상대전극으로 구성되어 있고, 이들의 선택과 조합은 시스템의 성능과 효율에 있어 중요한 역할을 한다. 본 연구에서는 Solar water battery의 구성요소들을 변화시켜 시스템에 미치는 영향을 알고자 하였다. 상대전극이 방전 시 미치는 영향, 광전극과 저장전극의 전극 재료, 전해질의 종류에 따른 태양에너지 전환 효율과 저장 용량에 미치는 영향에 대해 연구하였다. 이들의 최적화된 구성(TiO2 : NaFe-PB : Pt foil)에서 15시간동안의 광조사 후의 방전 용량이 72.393 mAh g-1으로 시스템 구성 조건에 따라 광전환/저장 효율이 크게 영향을 받음을 확인 할 수 있었다. 또한, 유기 오염물질을 광전극 반응조내 전해질에 첨가하여 광전하를 효율적으로 분리시킴으로써 광전류 증가시켰으며, 이로 인해 저장용량이 향상되고, 동시에 오염물질도 분해시킬 수 있음을 확인하였다. 이처럼 Solar water battery는 추가적인 외부 전압이 필요없는 새로운 친환경 태양에너지 전환/저장 시스템이며, 나아가 수처리에도 활용할 수 있을 것으로 기대된다.

Abstract AI-Helper 아이콘AI-Helper

A solar water battery is a system that generates power using solar energy. It is a combination of photoelectrochemical cells and an energy storage system. It can simultaneously convert and store solar energy without additional external voltage. Solar water batteries consist of photoelectrodes, stora...

주제어

표/그림 (9)

참고문헌 (20)

  1. Yu, M., McCulloch, W. D., Huang, Z., Trang, B. B., Lu, J., Amine, K., and Wu, Y., "Solar-powered Electrochemical Energy Storage: An Alternative to Solar Fuels," J. Mater. Chem. A, 4, 2766-2782 (2016). 

  2. Dunn, B., Kamath, H., and Tarascon, J.-M., "Electrical Energy Storage for the Grid: A Battery of Choices," Science, 334, 928-935 (2011). 

  3. Hermann, W. A., "Quantifying Global Exergy Resources," Energy, 31, 1685-1702 (2006). 

  4. Gandhi, O., Kumar, D. S., Rodriguez-Gallegos, C. D., and Srinivasan, D., "Review of Power System Impacts at High PV Penetration Part I: Factors Limiting PV Penetration," Solar Energy, 210, 181-201 (2020). 

  5. Kim, G., Oh, M., and Park, Y., "Solar-rechargeable Battery based on Photoelectrochemical Water Oxidation: Solar Water Battery," Sci. Rep., 6, 33400-33408 (2016). 

  6. Seo, J., Takata, T., Nakabayashi, M., Hisatomi, T., Shibata, N., Minegishi, T., and Domen, K., "Mg-Zr Cosubstituted Ta 3 N 5 Photoanode for Lower-onset-potential Solar-driven Photoelectrochemical Water Splitting," J. Am. Chem. Soc., 137, 12780-12783 (2015). 

  7. Wang, L.-P., Wang, P.-F., Wang, T.-S., Yin, Y.-X., Guo, Y.-G., and Wang, C.-R., "Prussian Blue Nanocubes as Cathode Materials for Aqueous Na-Zn Hybrid Batteries," J. Power Sources., 355, 18-22 (2017). 

  8. Choi, W., "Studies on TiO 2 Photocatalytic Reactions," J. Korean Ind. Eng. Chem., 14, 1011-1022 (2003). 

  9. Li, J., and Wu, N., "Semiconductor-based Photocatalysts and Photoelectrochemical Cells for Solar Fuel Generation: a Review," Catal. Sci. Technol., 5, 1360-1384 (2015). 

  10. Park, Y., Kim, W., Park, H., Tachikawa, T., Majima, T., and Choi, W., "Carbon-doped TiO 2 Photocatalyst Synthesized Without Using an External Carbon Precursor and the Visible Light Activity," Appl. Catal. B: Environ., 91, 355-361 (2009). 

  11. Deng, W., Zhao, H., Pan, F., Feng, X., Jung, B., Abdel-Wahab, A., Batchelor, B., and Li, Y., "Visible-light-driven Photocatalytic Degradation of Organic Water Pollutants Promoted by Sulfite Addition," Environ. Sci. Technol., 51, 13372-13379 (2017). 

  12. Wedege, K., Bae, D., Smith, W. A., Mendes, A., and Bentien, A., "Solar Redox Flow Batteries with Organic Redox Couples in Aqueous Electrolytes: A Minireview," J. Phys. Chem. C, 122, 25729-25740 (2018). 

  13. Xie, S.-W., Chen, S., Liu, Z.-Q., and Xu, C.-W., "Comparison of Alcohol Electrooxidation on Pt and Pd Electrodes in Alkaline Medium," Int. J. Electrochem. Sci., 6, 882-888 (2011). 

  14. Kolliopoulos, A. V., Kampouris, D. K., and Banks, C. E., "Indirect Electroanalytical Detection of Phenols," Analyst, 140, 3244-3250 (2015). 

  15. Naeem, K., and Ouyang, F., "Influence of Supports on Photocatalytic Degradation of Phenol and 4-chlorophenol in Aqueous Suspensions of Titanium Dioxide," J. Environ. Sci., 25, 399-404 (2013). 

  16. Wang, B., Han, Y., Wang, X., Bahlawane, N., Pan, H., Yan, M., and Jiang, Y., "Prussian Blue Analogs for Rechargeable Batteries," iScience, 3, 110-133 (2018). 

  17. Gong, K., "Vertically-aligned Sandwich Nanowires Enhance the Photoelectrochemical Reduction of Hydrogen Peroxide: Hierarchical Formation on Carbon Nanotubes of Cadmium Sulfide Quantum Dots and Prussian Blue Nanocoatings," J. Colloid Interface Sci., 449, 80-86 (2015). 

  18. Phadke, S., Mysyk, R., and Anouti, M., "Effect of Cation (Li + , Na + , K + , Rb + , Cs + ) in Aqueous Electrolyte on the Electrochemical Redox of Prussian Blue Analogue (PBA) Cathodes," J. Energy Chem., 40, 31-38 (2020). 

  19. You, Y., Wu, X.-L., Yin, Y.-X., and Guo, Y.-G., "High-quality Prussian Blue Crystals as Superior Cathode Materials for Room-Temperature Sodium-Ion Batteries," Energy Environ. Sci., 7, 1643-1647 (2014). 

  20. Li, L., Nie, P., Chen, Y., and Wang, J., "Novel Acetic Acid Induced Na-Rich Prussian Blue Nanocubes with Iron Defects as Cathodes for Sodium Ion Batteries," J. Mater. Chem. A, 7, 12134-12144 (2019). 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로