$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

수계 내 테트라사이클린, 설파다이아졸, 트리톤 X-100 혼합물의 광분해
Photodegradation of Mixtures of Tetracycline, Sulfathiazole, and Triton X-100 in Water 원문보기

한국환경농학회지 = Korean journal of environmental agriculture, v.40 no.1, 2021년, pp.13 - 19  

윤성호 (한국외국어대학교 자연과학대학 환경학과) ,  이성종 (한국외국어대학교 자연과학대학 환경학과) ,  조은혜 (전남대학교 농업생명과학대학 농생명화학과) ,  문준관 (국립한경대학교 농업생명과학대학 식물생명환경과학과)

Abstract AI-Helper 아이콘AI-Helper

BACKGROUND: Chemicals such as antibiotics and surfactants can enter agricultural environment and they can be degraded by natural processes such as photolysis. These chemicals exist in mixtures in the environment, but studies on degradation of the mixtures are limited. This study compares the photode...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 또한 Triton X-100의 경우 농업을 포함해 다양한 용도로 활용되고 있는 계면활성제이다. 따라서 본 연구에서는 계면활성제 중 Triton X-100과 항생제 중 테트라사이클린과 설파다이아졸을 대상 물질로 이들 물질이 단독으로 또는 혼합물로 존재할 때 광분해 정도를 비교하는 연구를 수행하였다.
본문요약 정보가 도움이 되었나요?

참고문헌 (31)

  1. Manzetti S, Ghisi R (2014) The environmental release and fate of antibiotics. Marine Pollution Bulletin, 79, 7-15. https://doi.org/10.1016/j.marpolbul.2014.01.005. 

  2. Van Boeckel TP, Glennon EE, Chen D, Gilbert M, Robinson TP, Grenfell BT, Levin SA, Bonhoeffer S, Laxminarayan R (2017) Reducing antimicrobial use in food animals. Science, 357, 1350-1352. http://doi.org/10.1126/science.aao1495. 

  3. Sarmah AK, Meyer MT, Boxall AB (2006) A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere, 65, 725-759. https://doi.org/10.1016/j.chemosphere.2006.03.026. 

  4. Martinez JL (2008) Antibiotics and antibiotic resistance genes in natural environments. Science, 321, 365-367. https://doi.org/10.1126/science.1159483. 

  5. Mejri L, Hassouna M (2016) Characterization and selection of Lactobacillus plantarum species isolated from dry fermented sausage reformulated with camel meat and hump fat. Applied Biological Chemistry, 59, 533-542. https://doi.org/10.1007/s13765-016-0192-5. 

  6. Pan M, Chu LM (2017) Fate of antibiotics in soil and their uptake by edible crops. Science of the Total Environment, 599, 500-512. https://doi.org/10.1016/j.scitotenv.2017.04.214. 

  7. Jechalke S, Heuer H, Siemens J, Amelung W, Smalla K (2014) Fate and effects of veterinary antibiotics in soil. Trends in Microbiology, 22, 536-545. https://doi.org/10.1016/j.envpol.2010.05.023. 

  8. Mullin CA, Fine JD, Reynolds RD, Frazier MT (2016) Toxicological risks of agrochemical spray adjuvants: organosilicone surfactants may not be safe. Frontiers in Public Health, 4, 92. https://doi.org/10.3389/fpubh.2016.00092. 

  9. Nobels, I., Spanoghe, P., Haesaert, G., Robbens, J., & Blust, R. (2011) Toxicity ranking and toxic mode of action evaluation of commonly used agricultural adjuvants on the basis of bacterial gene expression profiles. PLoS One, 6(11), e24139. https://doi.org/10.1371/journal.pone.0024139. 

  10. Ciarlo TJ, Mullin CA, Frazier JL, Schmehl DR (2012) Learning impairment in honey bees caused by agricultural spray adjuvants. PLoS One, 7, e40848. https://doi.org/10.1371/journal.pone.0040848. 

  11. Druart C, Scheifler R, De Vaufleury A (2010) Towards the development of an embryotoxicity bioassay with terrestrial snails: Screening approach for cadmium and pesticides. Journal of Hazardous Materials, 184, 26-33. https://doi.org/10.1016/j.jhazmat.2010.07.099. 

  12. Wang R, Yuan Y, Yen H, Grieneisen M, Arnold J, Wang D, Wang C, Zhang M (2019) A review of pesticide fate and transport simulation at watershed level using SWAT: Current status and research concerns. Science of The Total Environment, 669, 512-526. https://doi.org/10.1016/j.scitotenv.2019.03.141. 

  13. Santos, V. S. V., Silveira, E., & Pereira, B. B. (2019). Ecotoxicological assessment of synthetic and biogenic surfactants using freshwater cladoceran species. Chemosphere, 221, 519-525. https://doi.org/10.1016/j.chemosphere.2019.01.077. 

  14. Rios F, Olak-Kucharczyk M, Gmurek M, Ledakowicz S (2017) Removal efficiency of anionic surfactants from water during UVC photolysis and advanced oxidation process in H2O2/UVC system. Archives of Environmental Protection, 43, 20-26. https://doi.org/10.1515/aep-2017-0003. 

  15. Yun SH, Jho EH, Jeong S, Choi S, Kal Y, Cha S (2018) Photodegradation of tetracycline and sulfathiazole individually and in mixtures. Food and Chemical Toxicology, 116, 108-113. https://doi.org/10.1016/j.fct.2018.03.037. 

  16. Gomez-Pacheco CV, Sanchez-Polo M, Rivera-Utrilla J, Lopez-Penalver JJ (2012) Tetracycline degradation in aqueous phase by ultraviolet radiation. Chemical Engineering Journal, 187, 89-95. https://doi.org/10.1016/j.cej.2012.01.096. 

  17. Niu J, Li Y, Wang W (2013) Light-source-dependent role of nitrate and humic acid in tetracycline photolysis: kinetics and mechanism. Chemosphere, 92, 1423-1429. https://doi.org/10.1016/j.chemosphere.2013.03.049. 

  18. Saien J, Ojaghloo Z, Soleymani AR, Rasoulifard MH (2011) Homogeneous and heterogeneous AOPs for rapid degradation of Triton X-100 in aqueous media via UV light, nano titania hydrogen peroxide and potassium persulfate. Chemical Engineering Journal, 167, 172-182. https://doi.org/10.1016/j.cej.2010.12.017. 

  19. Tanaka FS, Wien RG, Mansager ER (1981) Survey for surfactant effects on the photodegradation of herbicides in aqueous media. Journal of Agricultural and Food Chemistry, 29, 227-230. 

  20. Jho EH, Yun SH, Thapa P, Nam JW (2020) Changes in the aquatic ecotoxicological effects of Triton X-100 after UV photodegradation. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-020-11362-2. 

  21. Garcia-Rodriguez A, Matamoros V, Fontas C, Salvado V (2013) The influence of light exposure, water quality and vegetation on the removal of sulfonamides and tetracyclines: a laboratory-scale study. Chemosphere, 90, 2297-2302. https://doi.org/10.1016/j.chemosphere.2012.09.092. 

  22. Ghosh HN, Palit DK, Sapre AV, RamaRao KVS, Mittal JP (1994) Photophysical and photochemical properties of Triton X-165 in aqueous and methanolic solutions. Photochemistry and Photobiology, 59, 405-411. https://doi.org/10.1111/j.1751-1097.1994.tb05056.x. 

  23. Laven, J., Senatore, D. and K Wijting, W., 2011. The partitioning of octyl phenol ethoxylate surfactant between water and sunflower oil. The Open Colloid Science Journal, 4, 37-41. https://doi.org/10.2174/1876530001104010037. 

  24. Glazier SA, Horvath JJ (1995) Feasibility of fluorescence detection of tetracycline in media mixtures employing a fiber optic probe. Analytical Letters, 28, 2607-2624. https://doi.org/10.1080/00032719508007413. 

  25. Choi KJ, Son HJ, Kim SH (2007) Ionic treatment for removal of sulfonamide and tetracycline classes of antibiotic. Science of the Total Environment, 387, 247-256. https://doi.org/10.1016/j.scitotenv.2007.07.024. 

  26. Bialk-Bielinska A, Stolte S, Matzke M, Fabianska A, Maszkowska J, Kolodziejska M, Liberek B, Stepnowski P, Kumirska J (2012) Hydrolysis of sulphonamides in aqueous solutions. Journal of Hazardous Materials, 221, 264-274. https://doi.org/10.1016/j.jhazmat.2012.04.044. 

  27. Zhu G, Sun Q, Wang C, Yang Z, Xue Q (2019) Removal of sulfamethoxazole, sulfathia-zole and sulfamethazine in their mixed solution by UV/H2O2 process. International Journal of Environmental Research and Public Health, 16, 1797. https://doi.org/10.3390/ijerph16101797. 

  28. Prabhu AAM, Venkatesh G, Rajendiran N (2010) Spectral characteristics of sulfa drugs: effect of solvents, pH and β-cyclodextrin. Journal of Solution Chemistry, 39, 1061-1086. https://doi.org/10.1007/s10953-010-9559-0. 

  29. Zhao J, Wei YJ (2006) Fluorescence spectra and fluorescence quantum yield of triton X-100. Guang Pu Xue Yu Guang Pu Fen Xi, 26, 1523-1525. 

  30. Lin JC, Lo SL, Hu CY, Lee YC, Kuo J (2015) Enhanced sonochemical degradation of perfluorooctanoic acid by sulfate ions. Ultrasonics Sonochemistry, 22, 542-547. https://doi.org/10.1016/j.ultsonch.2014.06.006. 

  31. Kwong KC, Chim MM, Davies JF, Wilson KR, Chan MN (2018) Importance of sulfate radical anion formation and chemistry in heterogeneous OH oxidation of sodium methyl sulfate, the smallest organosulfate. Atmospheric Chemistry and Physics, 18, 2809-2820. https://doi.org/10.5194/acp-18-2809-2018. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로