$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

MaxEnt 모델링을 이용한 기후변화 시나리오에 따른 서어나무 (Carpinus laxiflora)와 개서어나무 (C. tschonoskii)의 분포변화 예측
Prediction of Distribution Changes of Carpinus laxiflora and C. tschonoskii Based on Climate Change Scenarios Using MaxEnt Model 원문보기

한국농림기상학회지 = Korean Journal of Agricultural and Forest Meteorology, v.23 no.1, 2021년, pp.55 - 67  

이민기 (국민대학교 산림환경시스템학과) ,  천정화 (국립산림과학원 기후변화생태연구과) ,  이창배 (국민대학교 산림환경시스템학과)

초록
AI-Helper 아이콘AI-Helper

서어나무속 수종은 우리나라 온대중부지방 극상림을 이루는 주요 수종으로 인식되어 왔으며, 국내에서 넓은 분포역을 보인다. 기존 많은 연구들은 서어나무(C. laxiflora) 군락의 군집구조, 식생천이, 분포 현황 등에 대한 연구가 대부분을 이루었다. 그러나, 개서어나무(C. tschonoskii)의 경우, 개체종 수준에서의 집중연구보다는 임분 내 구성목으로서 다른 수목종들과의 군집구조 분석에 초점을 맞춰 아직까지 연구가 미흡실정이다. 또한, 두 수종에 대한 서식환경, 서식지 선호도, 기후 및 환경변화 등의 교란에 따른 서식지 변화에 대한 연구는 전무한 실정이다. 본 연구에서는 최대 엔트로피 모델링(MaxEnt; Maximum Entropy Modeling)기법을 사용해 서어나무와 개서어나무의 서식지 분포에 영향을 끼치는 환경인자를 분석하고 두 가지 기후 예측 시나리오인 RCP4.5 및 RCP8.5를 적용하여 각각 2050년대와 2090년대의 분포변화를 예측하였다. 연구결과 각 수종의 서식지 분포에 영향을 끼치는 주요인자로 서어나무는 고도, 온도 계절성, 연평균 강수량인 것으로 나타났고, 개서어나무는 온도 계절성, 연평균 강수량, 주간 일교차인 것으로 나타났다. 서식지 면적의 경우 서어나무는 RCP4.5, RCP8.5의 기후변화가 진행됐을 때, 현재 서식지 면적에 비해 각각 약 1.05배, 약 1.11배로 면적이 증가할 것으로 예측되었다. 개서어나무는 RCP4.5, RCP8.5의 기후변화가 진행됐을 때, 현재 서식지 면적에 비해 각각 약 1.24배, 약 1.33배의 증가가 보일 것으로 예측되었다. 본 연구는 분류학적으로 유사계통에 속하는 서어나무와 개서어나무의 기후변화에 따른 국내 분포확산과 분포지역 간 차이에 대한 미래예측 그리고 두 종의 서식지 및 개체군 관리에 있어서 잠재적 관리 대상지 및 고려사항에 대한 유의미한 정보를 제공할 것으로 판단된다.

Abstract AI-Helper 아이콘AI-Helper

Hornbeams (Carpinus spp.), which are widely distributed in South Korea, are recognized as one of the most abundant species at climax stage in the temperate forests. Although the distribution and vegetation structure of the C. laxiflora community have been reported, little ecological information of C...

주제어

표/그림 (11)

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 본 연구에서는 서어나무와 개서어나무의 생육 분포범위를 파악하고 미래 잠재 분포를 예측하기 위해 우리나라 전역을 대상으로 5년을 주기로 약 4, 000개 지점에서 동일한 방법론에 의해 조사가 실시되고 있는 국가산림자원조사(NFI; National Forest Inventory) 자료 중 가장 최신 자료인 제6차 NFI (2011∼2015) 자료를 활용하여 서어나무와 개서어나무 분포 지점을 추출하였다(Fig. 1).
본문요약 정보가 도움이 되었나요?

참고문헌 (38)

  1. Baek, H. J., C. H. Cho, W. T. Kwon, S. K. Kim, J. Y. Cho, and Y. G. Kim, 2011: Development strategy for new climate change scenarios based on RCP. Climate Change Research 2(1), 55-68. 

  2. Byeon, S. Y., and C. W. Yun, 2018: Community structure and vegetation succession of Carpinus laxiflora forest stands in South Korea. Korean Journal of Environment and Ecology 32(2), 185-202. 

  3. Chambers, J. M., and T. J. Hastie, 1992: Statistical models in S. California. 220-221. [Wadsworth and Brooks/Cole. ISBN.] 

  4. Cho, H. J., 1993: New Landscaping tree Carpinus laxiflora. Journal of Landscaping tree 12(1/2), 24-25. 

  5. Choi, M. S., 2004: Carpinus laxiflora. Journal of Landscaping tree 83, 11-12. 

  6. Choi, S. H., S. H. Hong, J. W. Cho, S. D. Lee, and J. S. Kim, 2012: Characteristics of the Carpinus laxiflora Community in the Gyeongju National Park. Korean Journal of Environment and Ecology 26(6), 934-940. 

  7. Chun, J. H., C. B. Lee, and S. M. Yoo, 2015: Shifts of geographic distribution of Pinus koraiensis based on climate change scenarios and GARP model. Korean Journal of Agricultural and Forest Meteorology 17(4), 348-357. 

  8. Donnell, M, and D. Ignizio, 2012: Bioclimatic predictors for supporting ecological applications in the conterminous United States. U.S. Department of the interior geological survey, 4-9. 

  9. Hong, S. H., S. D. Lee, and J. S. Kim, 2012: Plant Community Structure of Daetjae(hill)-Baekbongryung(ridge), the Baekdudaegan Mountain. Korean Journal of Environment and Ecology 26(5), 719-729. 

  10. Huntley, B., P. M. Berry, W. Cramer, A. P. McDonald, 1995: Modelling present and potential future ranges of some European higher plants using climate response surfaces. Journal of Biogeography 22(6), 967-1001. 

  11. IPCC Climate Change, 2007: The Physical Science Basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press. 

  12. IPCC Climate Change, 2013: The Physical Science Basis, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press. 

  13. Iverson, L. R., and A. M. Prasad, 1998: Predicting abundance of 80 tree species following climate change in the eastern United States. Ecological Monographs 68(4), 465-485. 

  14. Kim, D. Y., C. W. Seo, Y. S. Choi, and T. Y. Choi, 2008: Articles: A study on wildlife habitat suitability modeling for Goral (Nemorhaedus caudatus raddeanus) in Seoraksan National Park. Journal of the Korea Society of Environmental Restoration Technology 11(3), 28-38. 

  15. Kim, J. S., and T. Y. Kim, 2014: Trees of Korea. stone pillow, 195pp. 

  16. Ko, S. Y., J. H. Sung, J. H. Chun, Y. G. Lee, and M. Y. Shin, 2014: Predicting the changes of yearly productive area distribution for Pinus densiflora in Korea based on climate change scenarios. Korean Journal of Agricultural and Forest Meteorology 16(1), 72-82. 

  17. Korea National Arboretum, 2010: A Field Guide to tree & Shrubs. Seoul, 100pp. 

  18. Korean climate change assessment report 2020, 2020: Climate Change Impact and Adaptation. Ministry of Environment 

  19. Leathwick, J. R., D. Whitehead, and M. McLeod, 1996: Predicting changes in the composition of New Zealand's indigenous forests in response to global warming: a modeling approach. Environmental Software 11(1/3), 81-90. 

  20. Lee, C. B., and H. H. Kim, 2017: Elevational patterns of plant species richness and relative importance of climatic and topographic factors on the Mt. Seorak, South Korea. Journal of Agriculture & Life Science 52(3), 1-11. 

  21. Lee, D. K., and J. U. Kim, 2007: Vulnerability assessment of sub-alpine vegetations by climate change in Korea. Journal of the Korea Society of Environmental Restoration Technology 10(6), 110-119. 

  22. Lee, D. K., J. U. Kim, and C. Park, 2010: A prediction of forest vegetation based on land cover change in 2090. Journal of Environmental Impact Assessment 19(2), 117-125. 

  23. Lee, W. S., J. H. Kim, and K. T. Kim, 2000: The analysis of successional trends by topographic positions in the natural deciduous forest of Mt. Chumbong. Journal of Korean forestry society 89(5), 655-665. 

  24. Lee, Y. H., Y. J. Oh, S. H. Hong, C. S. Na, Y. E. Na, C. S. Kim, and S. I. Sohn, 2015: Predicting the suitable habitat of invasive alien plant Conyza bonariensis based on climate change scenarios. Journal of Climate Change Research 6(3), 243-248. 

  25. Lee, Y. M., 1995: A hundred of Korea trees we need to know. Hyeonamsa, 337pp. 

  26. Lim, K. B., 2001: Grow up, tree. The other world, 52pp. 

  27. Moon, J. G., C. S. Shim, O. J. Jung, J. W. Hong, J. Y. Han, and Y. I. Song, 2020: Characteristics in regional climate change over South Korea for regional climate policy measures: Based on long-term observations. Journal of Climate Change Research 11(6-2), 755-770. 

  28. Open MET Data Portal, 2010: The climate atlas of Korea. Korea Meteorological Administration, 20-34. 

  29. Peng, J., J. H. Jeong, J. H. Yoon, H. J. Kim, S. Y. S. Wang, H. W. Linderholm, K. Fang, X. Wu, and D. Chen, 2020: Abrupt shift to hotter and drier climate over inner East Asia beyond the tipping point. Science 370(6520), 1095-1099. 

  30. Phillips, S. J., R. P. Anderson, and R. E. Schapire, 2006: Maximum entropy modeling of species geographic distributions. Ecological Modeling 190(3/4), 231-259. 

  31. Seo, C. W., Y. R. Park, and Y. S. Choi, 2008: Comparison of species distribution models according to location data. Journal of Korean Society for Geospatial Information 16(4), 59-64. 

  32. Song, H. K., S. M. Lee, and H. S. Kim, 2011: Actual vegetation distribution status and ecological succession in the Deogyusan national park. Korean Journal of Environment and Ecology 25(1) 37-46. 

  33. Song, W. K., and E. Y. Kim, 2012: A comparison of machine learning species distribution methods for habitat analysis of the Korea water deer (Hydropotes inermis argyropus). Korean Journal of Remote Sensing 28(1), 171-180. 

  34. Sung, J. H., B. S. Kim, H. S. Kang, and C. H. Cho, 2012: Non-stationary frequency analysis for extreme precipitation based on Representative Concentration Pathways (RCP) climate change scenarios. Journal of Disaster Management 12(2), 231-244. 

  35. Sykes, M. T., I. C. Prentice, and W. Cramer, 1996: A bioclimatic model for the potential distributions of European tree species under present and future climates. Journal of Biogeography 23(2), 203-233. 

  36. Thuiller, W., J. Vaydera, J. Pino, S. Sabate, S. Lavorel, and C. Gracia, 2003: Large-scale environmental correlates of forest tree distributions in Catalonia (NE Spain). Global Ecology and Biogeography 12(4), 313-325. 

  37. Uyeki, H., 1933: On the forest zones Korea. Acta Phytotaxonomica et Geobotanica 2, 73-85. 

  38. Won, H. K., H. S. Kim, C. H. Jeon, and Y. J. Cho, 2016: A community distribution on mountain forest vegetation of Jeju experimental forest, Korea -mainly on Hannam Experimental Forest-. The Journal of Korean Island 28(1), 203-220. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로