$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

북극 척치해 아라온 마운드 퇴적물의 기원지에 관한 연구
Provenance of the Sediments of the Araon Mound in the Chukchi Sea, Arctic Ocean 원문보기

광물과 암석 = Korean journal of mineralogy and petrology, v.34 no.1, 2021년, pp.15 - 29  

장정규 (K-water 연구원) ,  구효진 (경상대학교 지질과학과 및 기초과학연구소) ,  조현구 (경상대학교 지질과학과 및 기초과학연구소)

초록
AI-Helper 아이콘AI-Helper

북극해는 기후 변화에 따라 북극의 해빙과 빙상의 분포가 달라지며 쇄설성 퇴적물 내 광물의 특성이 변화한다. 따라서 해빙이나 빙산에 의해 운송된 해양 퇴적물을 연구하는 것은 지구 기후 변화를 이해하는 데에 매우 중요하다. 본 연구에서는 척치해저고원의 아라온 마운드에서 채취한 4개의 중력코어와 아라온 마운드 사이 사면에서 채취한 1개의 중력코어를 사용하여, 벌크광물조성, 점토광물조성, 빙운쇄설물 연구를 통해 쇄설성 퇴적물의 기원지를 알아보고 이를 바탕으로 서북극해의 고환경 변화를 재구성하였다. 코어 퇴적물들은 갈색, 회색, 녹회색을 띠며 서북극해에서 나타나는 간빙기/빙기 순환에 따른 퇴적물 색의 특성을 잘 나타내고 있다. 척치해저고원에서 획득한 코어 퇴적물을 광물 특성과 주변에서 수행된 기존 연구와 비교하여 총 3개의 유닛으로 구분하였다. 최후빙기극대기에 퇴적된 유닛 3 퇴적물은 동시베리아해로 유입되는 콜리마 강과 인디기르카 강 퇴적물들이 동시베리아해 대륙붕에 퇴적된 후, 해빙이나 해류에 의해 유입된 것으로 보인다. 퇴빙기에 해당하는 유닛 2 퇴적물은 동시베리아해로 유입되는 콜리마 강, 인디기르카 강, 보퍼트해로 유입되는 맥켄지강과 캐나다 군도로부터 함께 공급된 것으로 보이며, 로렌타이드 빙상의 융해에 의하여 다량의 빙운쇄설물들이 유입되었다. 간빙기 퇴적물인 유닛 1의 경우, 세립질 퇴적물들은 캐나다 북부와 동시베리아해로부터 해빙과 해류에 의해 공급되었으며, 조립질 퇴적물들은 캐나다 군도로부터 해빙에 의해 유입된 것으로 여겨진다.

Abstract AI-Helper 아이콘AI-Helper

In the Arctic Ocean, the distribution of sea ice and ice sheets changes as climate changes. Because the distribution of ice cover influences the mineral composition of marine sediments, studying marine sediments transported by sea ice or iceberg is very important to understand the global climate cha...

주제어

표/그림 (7)

참고문헌 (61)

  1. Adler, R.E., Polyak, L., Ortiz, J.D., Kaufman, D.S., Channell, J.E., Xuan, C., Grottoli, A.G., Sellen, E. and Crawford, K.A., 2009, Sediment record from the western Arctic Ocean with an improved late quaternary age resolution: HOTRAX core HLY0503-8JPC, Mendeleev ridge. Global and Planetary Change, 68, 18-29. 

  2. Andrews, J.T., MacLean, B., Kerwin, M., Manley, W., Jennings, A.E. and Hall, F., 1995, Final stages in the collapse of the Laurentide Ice Sheet, Hudson Strait, Canada, NWT: 14C AMS dates, seismic stratigraphy, and magnetic susceptibility logs. Quaternary Science Reviews, 14, 983-1004. 

  3. Backman, J., Jakobsson, M., Lovlie, R., Polyak, L. and Febo, L.A., 2004, Is the central Arctic Ocean a sediment starved basin? Quaternary Science Review, 23, 1435-1454. 

  4. Bazhenova, E., Fagel, N. and Stein, R., 2017, North American origin of "pink-white" layers at the Mendeleev Ridge (Arctic Ocean): New insights from lead and neodymium isotope composition of detrital sediment component. Marine Geology, 386, 44-55. 

  5. Biscaye, P.E., 1965, Mineralogy and sedimentation of recent deep-sea clay in the Atlantic Ocean and adjacent seas and oceans. Geological Society of America, Bullentin, 76, 803-832. 

  6. Callaghan, T.V., Johansson, M., Key, J., Prowse, T., Ananicheva, M. and Klepikov, A., 2011,. Feedbacks and interactions: From the Arctic cryosphere to the climate system. Ambio, 40, 75-86. 

  7. Campbell, N.J. and Collin, A.E., 1958, The discoloration of Foxe Basin ice. Journal of the Fisheries Board of Canada, 15, 1175-1188. 

  8. Darby, D.A. and Bischof, J.F., 2004, A Holocene record of changing Arctic Ocean ice drift analogous to the effects of the Arctic Oscillation. Paleoceanography and Paleoclimatology, 19, 1-9. 

  9. Darby, D.A., Bischof, J.F. and Jones, G.A., 1997, Radiocarbon chronology of depositional regimes in the western Arctic Ocean. Deep Sea Research Part II, 44, 1745-1757. 

  10. Darby, D.A., Myers, B. W., Jakobsson, M. and Rigor, I., 2011, Modern dirty sea ice characteristics and sources: The role of anchor ice. Journal of Geophysical Research, 116(C9), 1-18. 

  11. Darby, D.A., Ortiz, J.D., Grosch, C.E. and Lund, S.P., 2012, 1,500-year cycle in the Arctic Oscillation identified in Holocene Arctic sea-ice drift. Nature Geoscience, 5, 897-900. 

  12. Darby, D.A., Polyak, L. and Bauch, H., 2006, Past glacial and interglacial conditions in the Arctic Ocean and marginal seas - a review. Progress in Oceanography, 71, 129-144. 

  13. Dethleff, D., Nurnberg, D., Reimnitz, E., Saarso, M. and Savchenko, Y.P., 1993, East Siberian Arctic region expedition 92: The Laptev Sea - its significance for Arctic Sea ice formation and transpolar sediment flux. Report on Polar Research, 120, 3-37. 

  14. Dong, L., Liu, Y., Shi, X., Polyak, L., Huang, Y., Fang, X., Liu, J., Zou, J., Wang, K., Sun, F. and Wang, X., 2017, Sedimentary record from the Canada Basin, Arctic Ocean: implications for late to middle Pleistocene glacial history. Climate of the Past, 13. 511-531. 

  15. Fagel, N., Not, C., Gueibe, J., Mattielli, N. and Bazhenova, E., 2014, Late Quaternary evolution of sediment provenances in the Central Arctic Ocean: mineral assemblage, trace element composition and Nd and Pb isotope fingerprints of detrital fraction from the Northern Mendeleev Ridge. Quaternary Science Reviews, 92, 140-154. 

  16. Freire, A.F.M., Matsumoto, R. and Santos, L.A., 2011, Structural-stratigraphic control on the Umitaka Spur gas hydrates of Joetsu Basin in the eastern margin of Japan Sea. Marine and Petroleum Geology, 28, 1967-1978. 

  17. Harrison, J.C., St-Onge, M.R., Petrov, O., Strelnikov, S., Lopatin, B.,Wilson, F., Tella, S., Paul, D., Lynds, T., Shokalsky, S., Hults, C., Bergman, S., Jepsen, H. F. and Solli, A., 2008, Geological Map of the Arctic, Open File, Geological Survey of Canada, 5816p. 

  18. Hong, W.L., Torres, M.E., Carroll, J., Cremiere, A., Panieri, G., Yao, H. and Serov, P., 2017, Seepage from an arctic shallow marine gas hydrate reservoir is insensitive to momentary ocean warming. Nature Communications, 8, 1-14. 

  19. Jakobsson, M., Grantz, A., Kristoffersen, Y. and Macnab, R., 2003, Physiographic provinces of the Arctic Ocean seafloor. Geological Society of America Bulletin, 115, 1443-1455. 

  20. Jakobsson, M., Grantz, A., Kristoffersen, Y., Macnab, R., MacDonald, R. W., Sakshaug, E. and Jokat, W., 2004, The Arctic Ocean: Boundary conditions and background information. In The organic Carbon Cycle in the Arctic Ocean (eds. Stein, R. and MacDonald, R.W.), Springer, Berlin, Heidelberg, 1-32. 

  21. Jakobsson, M., Lovlie, R., Al-Hanbali, H., Arnold, E., Backman, J. and Morth, M., 2000, Manganese and color cycles in Arctic Ocean sediments constrain Pleistocene chronology. Geology, 28, 23-26. 

  22. Jin, Y.K. and Shipboard Scientific Party, 2018, ARA08C Cruise Report: 2017 Korea-Canada-USA Beaufort Sea Research Program. Korea Polar Research Institute. 214p. 

  23. Jin, Y.K., Shipboard Scientific Party, 2019, ARA09C Cruise Report: 2018 Korea-Russia-Japan East Siberian/Chukchi Sea Research Program. Korea Polar Research Institute, Korea Polar Research Institute, 205p. 

  24. Kalinenko, V.V., 2001, Clay minerals in sediments of the Arctic seas. Lithology and Mineral Resources, 36, 362-372. 

  25. Kobayashi, D., Yamamoto, M., Irino, T., Nam, S.I., Park, Y.H., Harada, N., Nagashima, K., Chikata, K. and Saitoh, S.I., 2016, Distribution of detrital minerals and sediment color in western Arctic Ocean and northern Bering Sea sediments: Changes in the provenance of western Arctic Ocean sediments since the last glacial period. Polar Science, 10, 519-531. 

  26. Kocherla, M., 2013, Authigenic gypsum in gas-hydrate associated sediments from the east coast of India (Bay of Bengal). Acta Geologica Sinica, 87, 749-760. 

  27. Kuijipers, A., Knutz, P. and Moros, M., 2014, Ice-Rafted Debris (IRD). Encyclopedia of Marine Geosciences, 1-7. 

  28. Lin, Q., Wang, J., Algeo, T.J., Su, P. and Hu, G., 2016, Formation mechanism of authigenic gypsum in marine methane hydrate settings: evidence from the northern South China Sea. Deep Sea Research Part I: Oceanographic Research Papers, 115, 210-220. 

  29. McKay, J. L., de Vernal, A., Hillaire-Marcel, C., Not, C., Polyak, L. and Darby, D., 2008, Holocene fluctuations in Arctic sea-ice cover: dinocyst-based reconstructions for the eastern Chukchi Sea. Canadian Journal of Earth Sciences, 45, 1377-1397. 

  30. Naidu, A.S. and Mowatt, T.C., 1983, Sources and dispersal patterns of clay minerals in surface sediments from the continental-shelf areas off Alaska. Geological Society of America Bulletin, 94, 841-854. 

  31. Naidu, A.S., Creager, J.S. and Mowatt, T.C., 1982, Clay mineral dispersal patterns in the North Bering and Chukchi seas. Marine Geology, 47, 1-15. 

  32. Okulitch, A.V., 1991, Geology of the Canadian Archipelago and North Greenland. In Innuitian orogen and Arctic platform: Canada and Greenland. The geology of North America (Ed. Trettiln, H.P.), The Geological Society of America, Boulder, Colorado, E, 1:200,000. 

  33. Park, K., Ohkushi, K.I., Cho, H.G. and Khim, B.K., 2017, Lithostratigraphy and paleoceanography in the Chukchi Rise of the western Arctic Ocean since the last glacial period. Polar Science, 11, 42-53. 

  34. Patchett, P.J., Embry, A.F., Ross, G.M., Beauchamp, B., Harrison, J.C., Mayr, U. and Spence, G.O., 2004, Sedimentary cover of the Canadian Shield through Mesozoic time reflected by Nd isotopic and geochemical results for the Sverdrup Basin, Arctic Canada. The Journal of Geology, 112, 39-57. 

  35. Phillips, R.L. and Grantz, A., 2001, Regional variations in provenance and abundance of ice-rafted clasts in Arctic Ocean sediments: Implications for the configuration of Late Quaternary oceanic and atmospheric circulation in the Arctic. Marine Geology, 172, 91-115. 

  36. Pierre, C., 2017, Origin of the authigenic gypsum and pyrite from active methane seeps of the southwest African Margin. Chemical Geology, 449, 158-164. 

  37. Pierre, C., Bayon, G., Blanc-Valleron, M.M., Mascle, J. and Dupre, S., 2014, Authigenic carbonates related to active seepage of methane-rich hot brines at the Cheops mud volcano, Menes caldera (Nile deep-sea fan, eastern Mediterranean Sea). Geo-Marine Letters, 34, 253-267. 

  38. Polyak, L. and Jakobsson, M., 2011, Quaternary sedimentation in the Arctic Ocean: Recent advances and further challenges. Oceanography, 24, 52-64. 

  39. Polyak, L.V., Curry, W.B., Darby, D.A., Bischof, J. and Cronin, T.M., 2004, Contrasting glacial/interglacial regimes in the Western Arctic Ocean as exemplied by a sedimentary record from the Mendeleev Ridge. Palaeogeography, Palaeoclimatology, Palaeoecology, 203, 73-93. 

  40. Polyak, L., Bischof, J., Ortiz, J.D., Darby, D.A., Channell, J.E., Xuan, C. and Adler, R.E., 2009, Late Quaternary stratigraphy and sedimentation patterns in the western Arctic Ocean. Global and Planetary Change, 68, 5-17. 

  41. Rachold, V., 1999, Major, trace, and rare earth element geochemistry of suspended particulate material of East Siberian rivers draining to the Arctic Ocean. In: Land-ocean systems in the Siberian Arctic: Dynamics and History (eds. Kassens, H., Bauch, H., Dmitrenko, H.A., Eicken, H., Hubberten, H.-W., Melles, M., Thiede, J., and Timokhov, L.A.) Heidelberg: Springer-Verlag, 199-222. 

  42. Reimnitz, E., Marincovich, L., McCormick, M. and Briggs, W.M., 1992, Suspension freezing of bottom sediment and biota in the Northwest passage and implications for Arctic Ocean sedimentation. The Canadian Journal of Earth Science, 29, 693-703. 

  43. Royer, T.C. and Emery, W.J., 1987, Circulation in the Gulf of Alaska, 1981. Deep Sea Research Part A. Oceanographic Research Papers, 34, 1361-1377. 

  44. Sassen, R., Roberts, H.H., Carney, R., Milkov, A.V., DeFreitas, D.A., Lanoil, B. and Zhang, C., 2004, Free hydrocarbon gas, gas hydrate, and authigenic minerals in chemosynthetic communities of the northern Gulf of Mexico continental slope: relation to microbial processes. Chemical Geology, 205, 195-217. 

  45. Serie, C., Huuse, M. and Schodt, N.H., 2012, Gas hydrate pingoes: Deep seafloor evidence of focused fluid flow on continental margins. Geology, 40, 207-210. 

  46. Silverberg, N., 1972, Sedimentology of the surface sediments of the east Siberian and Laptev Seas. Ph.D. Thesis, University of Washington, 184p. 

  47. Somoza, L., Leon, R., Medialdea, T., Perez, L.F., Gonzalez, F.J. and Maldonado, A., 2014, Seafloor mounds, craters and depressions linked to seismic chimneys breaching fossilized diagenetic bottom simulating reflectors in the central and southern Scotia Sea, Antarctica. Global and Planetary Change, 123, 359-373. 

  48. Stein, R., 2008, Arctic Ocean sediments: processes, proxies, and paleoenvironment. Development in Marine Geology, Elsevier, 608p. 

  49. Stein, R., 2019, The late Mesozoic-Cenozoic Arctic Ocean climate and sea ice history: A challenge for past and future scientific ocean drilling. Paleoceanography and Paleoclimatology, 34, 1851-1894. 

  50. Stein, R., Matthiessen, J., Niessen, F., Krylov, A., Nam, S. I. and Bazhenova, E., 2010, Towards a better (litho-) stratigraphy and reconstruction of Quaternary paleoenvironment in the Amerasian Basin (Arctic Ocean). Polarforschung, 79, 97-121. 

  51. Stocker, T., 2014, Climate change 2013: the physical science basis: Working Group I contribution to the Fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, 1205p. 

  52. Stokes, C.R., Clark, C.D., Darby, D.A. and Hodgson, D.A., 2005, Late Pleistocene ice export events into the Arctic ocean from the M'Clure strait ice stream, Canadian Arctic Archipelago. Global and Planetary Change, 49, 139-162. 

  53. Tantillo, B., 2012, Can Sea ice-rafted debris be distinguished from iceberg-rafted debris based on grain surface features? Analysis of quartz grains from modern Arctic Ocean sea ice floes. In Geological Society of America Abstracts with Programs, Vol. 44, No. 4, p. 1. 

  54. Tremblay, L.B., Mysak, L.A. and Dyke, A.S., 1997, Evidence from driftwood records for century-to-millennial scale variations of the high latitude atmospheric circulation during the Holocene. Geophysical Research Letters, 24, 2027-2030. 

  55. Viscosi-Shirley, C., Mammone, K., Pisias, N. and Dymond, J., 2003a, Clay mineralogy and multielement chemistry of surface sediments on the Siberian-Arctic shelf: Implications for sediment provenance and grain size sorting. Continental Shelf Research, 23, 1175-1200. 

  56. Viscosi-Shirley, C., Pisias, N. and Mammone, K., 2003b, Sediment source strength, transport pathways and accumulation patterns on the Siberian Arctic's Chukchi and Laptev shelves. Continental Shelf Research, 23, 1201-1225. 

  57. Vogt, C., Knies, J., Spielhagen, R.F. and Stein, R., 2001, Detailed mineralogical evidence for two nearly identical glacial/deglacial cycles and Atlantic water advection to the Arctic Ocean during the last 90,000 years. Global and Planetary Change, 31, 23-44. 

  58. Wagner, A., Lohmann, G. and Prange, M., 2011, Arctic river discharge trends since 7ka BP. Global and Planetary Change, 79, 48-60. 

  59. Wahsner, M., Muller, C., Stein, R., Ivanov, G., Levitan, M., Shelekova, E. and Tarasov, G., 1999, Clay mineral distributions in surface sediments from the Central Arctic Ocean and the Eurasian continental margin as indicator for source areas and transport pathways: A synthesis. Boreas, 28, 215-233. 

  60. Weingartner, T., Aagaard, K., Woodgate, R., Danielson, S., Sasaki, Y. and Cavalieri, D., 2005, Circulation on the north central Chukchi Sea shelf. Deep Sea Research Part II: Topical Studies in Oceanography, 52, 3150-3174. 

  61. Zou, H., 2016, An X-ray diffraction approach: bulk mineral assemblages as provenance indicator of sediments from the Arctic Ocean. PhD Thesis, University of Bremen, Bremen, 104p. 

저자의 다른 논문 :

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로