$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

고로슬래그 미분말을 이용한 알칼리자극제 기반의 보강그라우트재 개발
Development of Alkali Stimulant-Based Reinforced Grouting Material from Blast Furnace Slag Powder 원문보기

지질공학 = The journal of engineering geology, v.31 no.1, 2021년, pp.67 - 81  

서혁 (조선대학교 토목공학과) ,  정수근 (조선대학교 토목공학과) ,  김대현 (조선대학교 토목공학과)

초록
AI-Helper 아이콘AI-Helper

그라우팅 공법연약지반의 보강과 방수 및 지하수위저하 또는 상승과 진동으로 인한 침하 및 부등침하로 손상된 구조물의 지지력을 높이고 차수를 높이는 목적으로 사용된다. 본 연구는 보강섬유를 이용하여 그라우트재료의 강도와 경화시간을 증대시키기 위하여 고로슬래그 기반의 무시멘트 그라우트재를 개발하고자 하였다. 이와 관련하여 본 연구에서는 고로슬래그 3종 미분말의 알칼리 자극제인 수산화칼슘을 미분말 형태로 배합하여 사용하였고 수산화칼슘의 함유량은 고로슬래그 미분말 대비 10, 20, 30%까지 치환하여 사용하였다. 또한 보강섬유 유무에 따른 강도를 비교하기 위하여 각 섬유를 0.5%씩 추가하여 실험을 수행하였다. 보강섬유인 아라미드탄소섬유 함유량이 증가함에 따라 일축압축강도가 증가하였는데 이는 그라우트재 내에 섬유에 의한 가교작용이 일축압축강도를 증가시킨 것으로 확인할 수 있다. 또한 알칼리자극제의 함유량이 증가할수록 일축압축강도가 증가하였으나 순수한 시멘트 100%일 때 보다는 낮은 강도를 확인할 수 있었다. 이는 알칼리자극제인 수산화칼슘이 고로슬래그 미분말과 반응했을 때 강도 증가에 영향을 미칠 수는 있으나, 시멘트와 비교하였을 때 미분말형태보다는 용액의 형태가 더 효과적이라는 것을 알 수 있다.

Abstract AI-Helper 아이콘AI-Helper

Grouting is used for reinforcement and waterproofing of soft ground to increase its bearing capacity, reduce the impacts of rising or lowering groundwater levels, and reduce subsidence due to vibration and general causes. This study investigated the enhancement of grout strength and hardening time b...

주제어

표/그림 (14)

참고문헌 (37)

  1. ACI Committee 440, 2017, Guide for the design and construction of externally bonded FRP systems for strengthening concrete structures (ACI 440.2R-17), American Concrete Institute, 110. 

  2. ASTM D3039, 2007, Standard test method for tensile properties of polymer matrix composite materials, American Society for Testing Materials (ASTM International), 13. 

  3. Banthia, N., Sappakittipakorn, M., 2007, Toughness enhancement in steel fiber reinforced concrete through fiber hybridization, Cement and Concrete Research, 37(9), 1366-1372. 

  4. Bernal, S.A., Mejia de, G.R., Provis, J.L., 2012, Engineering and durability properties of concretes based on alkali-activated granulated blast furnace slag/metakaolin blends, Construction Building Materials, 33, 99-108. 

  5. Brameshuber, W., 2006, Textile reinforced concrete, State-of-the-Art Report of RILEM Technical Committee 201-TRC, RILEM Publications, Bagneux, France. 

  6. Cho, W.J., Kim, H.S., Ann, K.I., 2020, A study on the hydration characteristics and fundamental properties of ternary blended cement using ferronickel slag, Journal of the Korean Recycled Construction Resources Institute, 8(1), 39-48 (in Korean with English abstract). 

  7. Choi, J.J., Lee, T.H., Park, B.J., Rho, K.G., Choi, S.M., 2019, Experimental study of seismic performance improvement of pilotis RC column strengthened with FRP, Journal of the Korean Society for Advanced Composite Structures, 10(1), 17-25 (in Korean with English abstract). 

  8. Choi, Y.S., 2016, An experimental study on the engineering properties of self-healing eco-friendly grout material, Docter Thesis, Myongji University, 1-110. 

  9. Gao, J., Sun, W., Morino, K., 1997, Mechanical properties of steel fiber-reinforced, high-strength, lightweight concrete, Cement and Concrete Composites, 19(4), 307-313. 

  10. Guerrieri, M., Sanjayan, J.G., 2009, Behavior of combined fly ash/slag-based geopolymers when exposed to high temperatures, Fire and Materials, 34(4), 163-175. 

  11. Han, C.G., Kim, S.H, Son, H.J., 2009, Engineering characteristics analysis of high strength concrete followed in replacement ratio increase in blast furnace slag, Journal of the Korean Recycled Construction Resources Institute, 4(3), 62-68 (in Korean with English abstract). 

  12. Hur, J.H., Kim, J.H., Park, W.G.I., Kim, K.H., 2013, Seismic performance of seismic retrofitted column by various type of FRP, Journal of the Korean Society for Railway, 2013(5), 1378-1383. 

  13. Hyeon, H.J., 2017, An experimental study on the properties of the cementless lightweight aerated concrete with blast furnace slag, Master Thesis, Konkuk University, 1-46. 

  14. Jang, H.O., Ji, N.O., 2013, An experimental study on the mixing of normal strength and high fluidity concrete using ground granulated blast furnace slag, Journal of the Architectural Institute of Korea Structure & Construction, 29(6), 81-88 (in Korean with English abstract). 

  15. Jeong, J.Y., Jang, S.Y., Choi, Y.C., Jung, S.H., Kim, S.I., 2015, Effects of replacement ratio and fineness of GGBFS on the hydration and pozzolanic reaction of high-strength high-volume GGBFS blended cement pastes, Journal of the Korea Concrete Institute, 27(2), 115-125 (in Korean with English abstract). 

  16. Jo, S.G., 2013, An experimental study on the workability and engineering properties of concrete using ground granulated blast furnace slag, The Society of Convergence Knowledge Transactions, 1(1), 43-50 (in Korean with English abstract). 

  17. Kang, S.T., Choi, J.I., Koh, K.T., Lee, K.S., Lee, B.Y., 2016, Hybrid effects of steel fiber and microfiber on the tensile behavior of ultra-high performance concrete, Composite Structures, 145, 37-42. 

  18. Kim, H.C., 2017, A Study on the development of a grouting material containing blast furnace slag and carbon fiber, Doctor Thesis, Chosun University, 1-102. 

  19. Kim, J.H., Han, M.C., Han, C.G., 2014, Strength development of the concrete incorporating blast furnace slag and recycled aggregate as alkali activator, Journal of the Korean Recycled Construction Resources Institute, 2(2), 107-114 (in Korean with English abstract). 

  20. Kim, W.K., 2012, Current states and prospect of utilization of blast furnace slag, Korean Institute of Architecture, 56(8), 14-17. 

  21. Kim, Y.H., Han, C.G., Lee, H.J., 2013, Effect of recycled fine aggregate powder and OPC on the strength gain properties of mortar using blast furnace slag powder and natural aggregates, Journal of the Architectural Institute of Korea Structure & Construction, 29(3), 81-88 (in Korean with English abstract). 

  22. Kim, Y.W., 2010, Containing aramid fiber reinforced concrete research, Master Thesis, Kyungpook National University, 1-45. 

  23. Lee, C.H., Eo, S.H., 2020, Compressive strength and durability evaluation by freezing and thawing test of repaired reinforced concrete columns, Journal of the Korea Contents Association, 20(12), 529-536 (in Korean with English abstract). 

  24. Marjanovic, N., Komljenovic, M., Bascarevic, Z., Nikolic, V., Petrovic, R., 2015, Physical-mechanical and microstructural properties of alkali-activated fly ash-blast furnace slag blends, Ceramic International, 41(1), 1421-1435. 

  25. Mechtcherine, V., 2013, Novel cement-based composites for the strengthening and repair of concrete structures, Construction and Building Materials, 41, 365-373. 

  26. Nam, J.S., Ryu, J.C., Kim, K.Y., Kim, H.S., Jeon, J.K., 2014, Improvement of the strength properties and impact resistance of the cement composite materials by the use of surface modification of the aramid fibers, Journal of the Korea Institute for Structural Maintenance and Inspection, 19(1), 100-108 (in Korean with English abstract). 

  27. Nath, S.K., Kumar, S., 2013, Influence of iron making slags on strength and microstructure of fly ash geopolymer, Construction Building Materials, 38, 924-930. 

  28. Oh, J.E., Monteiro, P.J.M., Jun, S.S., Choi, S., Clark, S.M., 2010, The evolution of strength and crystalline phases for alkali-activated ground blast furnace slag and fly ash based geopolymers, Cement Concrete Research, 40(2), 189-196. 

  29. Park, K.H., 2015, Evaluation of applicability of environment friendly biogrouting methods in loose frictional soils, Doctor Thesis, Chosun University, 1-167. 

  30. Park, T.B., 2017, Physio-chemical characteristics of slag based zero-cement grout, Master Thesis, Myongji University, 1-45. 

  31. Romualdi, J.P., Batson, G.B., 1963, Mechanics of crack arrest in concrete, Journal of the Engineering Mechanics Division, 89(3), 147-168. 

  32. Seo, H., Park, K.H., Kim, C.J., Kim, H.C., Kim, D.H., 2019, Development of reinforcement grout materials using blast furnace slag powder and aramid fiber, Journal of the Korean Geosynthetics Society, 18(1), 67-77 (in Korean with English abstract). 

  33. Seo, M.G., Park, S.J., 2010, Manufacturing method of carbon fibers and their application fields, Polymer Science and Technology, 21(2), 130-140. 

  34. Shah, S.P., 1984, Fiber reinforced concrete, Handbook of Structural Concrete, 1, 1-14. 

  35. Shah, S.P., Rangan, B.V., 1971, Fiber reinforced concrete properties, ACI Journal, 68(2), 126-135. 

  36. Yang, Y.H., 2017, Evaluation of reinforcement effect of grouting using aramid fiber, Master Thesis, Chosun University, 1-65. 

  37. Yoo, S.J., Yuan, T.F., Hong, S.H., Yoon, Y.S., 2020, Evaluation of structural performance of concrete beams strengthened with carbon fiber sheets and no-slump concrete, Journal of the Korean Society of Hazard Mitigation, 20(4), 185-193 (in Korean with English abstract). 

저자의 다른 논문 :

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로