$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Enhanced Production of Soluble Pyrococcus furiosus α-Amylase in Bacillus subtilis through Chaperone Co-Expression, Heat Treatment and Fermentation Optimization 원문보기

Journal of microbiology and biotechnology, v.31 no.4, 2021년, pp.570 - 583  

Zhang, Kang (State Key Laboratory of Food Science and Technology, Jiangnan University) ,  Tan, Ruiting (State Key Laboratory of Food Science and Technology, Jiangnan University) ,  Yao, Dongbang (State Key Laboratory of Food Science and Technology, Jiangnan University) ,  Su, Lingqia (State Key Laboratory of Food Science and Technology, Jiangnan University) ,  Xia, Yongmei (State Key Laboratory of Food Science and Technology, Jiangnan University) ,  Wu, Jing (State Key Laboratory of Food Science and Technology, Jiangnan University)

Abstract AI-Helper 아이콘AI-Helper

Pyrococcus furiosus α-amylase can hydrolyze α-1,4 linkages in starch and related carbohydrates under hyperthermophilic condition (~ 100℃), showing great potential in a wide range of industrial applications, while its relatively low productivity from heterologous hosts has limited the...

주제어

참고문헌 (44)

  1. 1 van der Maarel M van der Veen B Uitdehaag JCM Leemhuis H Dijkhuizen L 2002 Properties and applications of starchconverting enzymes of the α-amylase family J. Biotechnol. 94 137 155 10.1016/S0168-1656(01)00407-2 11796168 

  2. 2 Richardson TH Tan X Frey G Callen W Cabell M Lam D 2002 A novel, high performance enzyme for starch liquefaction. Discovery and optimization of a low pH, thermostable α-amylase J. Biol. Chem. 277 26501 26507 10.1074/jbc.M203183200 11994309 

  3. 3 Khemakhem B Ben Ali M Aghajari N Juy M Haser R Bejar S 2009 Engineering of the α-amylase from Geobacillus stearothermophilus US100 for detergent incorporation Biotechnol. Bioeng. 102 380 389 10.1002/bit.22083 18951544 

  4. 4 Saito N 1973 A thermophilic extracellular α-amylase from Bacillus licheniformis Arch. Biochem. Biophys. 155 290 298 10.1016/0003-9861(73)90117-3 4705426 

  5. 5 Yuuki T Nomura T Tezuka H Tsuboi A Yamagata H Tsukagoshi N 1985 Complete nucleotide sequence of a gene coding for heat- and pH-stable α-amylase of Bacillus licheniformis : comparison of the amino acid sequences of three bacterial liquefying α-amylases deduced from the DNA sequences J. Biochem. 98 1147 1156 10.1093/oxfordjournals.jbchem.a135381 2418011 

  6. 6 Violet M Meunier JC 1989 Kinetic study of the irreversible thermal denaturation of Bacillus licheniformis α-amylase Biochem. J. 263 665 670 10.1042/bj2630665 2597125 

  7. 7 Straub CT Counts JA Nguyen DMN Wu CH Zeldes BM Crosby JR 2018 Biotechnology of extremely thermophilic archaea FEMS Microbiol. Rev. 42 543 578 10.1093/femsre/fuy012 29945179 

  8. 8 Adams MW 1993 Enzymes and proteins from organisms that grow near and above 100 degrees C Annu. Rev. Microbiol. 47 627 658 10.1146/annurev.mi.47.100193.003211 8257111 

  9. 9 Demirjian DC Moris-Varas F Cassidy CS 2001 Enzymes from extremophiles Curr. Opin. Chem. Biol. 5 144 151 10.1016/S1367-5931(00)00183-6 11282340 

  10. 10 Laderman KA Asada K Uemori T Mukai H Taguchi Y Kato I 1993 α-amylase from the hyperthermophilic archaebacterium Pyrococcus furiosus . Cloning and sequencing of the gene and expression in Escherichia coli J. Biol. Chem. 268 24402 24407 10.1016/S0021-9258(20)80539-0 8226990 

  11. 11 Dong G Vieille C Savchenko A Zeikus JG 1997 Cloning, sequencing, and expression of the gene encoding extracellular α-amylase from Pyrococcus furiosus and biochemical characterization of the recombinant enzyme Appl. Environ. Microbiol. 63 3569 3576 10.1128/AEM.63.9.3569-3576.1997 9293008 

  12. 12 Shen W 2003 Expression of α-amylase from Pyrococcus furiosus in different host cells. Doctor thesis Jiangnan University 

  13. 13 Wang P Wang P Tian J Yu X Chang M Chu X 2016 A new strategy to express the extracellular α-amylase from Pyrococcus furiosus in Bacillus amyloliquefaciens Sci. Rep. 6 22229 10.1038/srep22229 26916714 

  14. 14 Harwood CR Cranenburgh R 2008 Bacillus protein secretion: an unfolding story Trends Microbiol. 16 73 79 10.1016/j.tim.2007.12.001 18182292 

  15. 15 Wei Y Wang R Du L Lu J Huang K Huang R 2005 Secreted expression of synthesized hyperthermophilic α-amylase gene pfa in Pichia pastoris J. Chin. Biotechnol. 25 65 69 

  16. 16 Horwich AL 2013 Chaperonin-mediated protein folding J. Biol. Chem. 288 23622 23632 10.1074/jbc.X113.497321 23803606 

  17. 17 Hartl FU Hayer-Hartl M 2002 Protein folding - Molecular chaperones in the cytosol: from nascent chain to folded protein Science 295 1852 1858 10.1126/science.1068408 11884745 

  18. 18 Skjærven L Cuellar J Martinez A Valpuesta JM 2015 Dynamics, flexibility, and allostery in molecular chaperonins FEBS Lett. 589 2522 2532 10.1016/j.febslet.2015.06.019 26140986 

  19. 19 Zako T Murase Y Iizuka R Yoshida T Kanzaki T Ide N 2006 Localization of prefoldin interaction sites in the hyperthermophilic group II chaperonin and correlations between binding rate and protein transfer rate J. Mol. Biol. 364 110 120 10.1016/j.jmb.2006.08.088 17010374 

  20. 20 Martín-Benito J Boskovic J Gómez-Puertas P Carrascosa JL Simons CT Lewis SA 2002 Structure of eukaryotic prefoldin and of its complexes with unfolded actin and the cytosolic chaperonin CCT EMBO J. 21 6377 6386 10.1093/emboj/cdf640 12456645 

  21. 21 Whitehead TA Boonyaratanakornkit BB Höllrigl V Clark DS 2007 A filamentous molecular chaperone of the prefoldin family from the deep-sea hyperthermophile Methanocaldococcus jannaschii Protein Sci. 16 626 634 10.1110/ps.062599907 17384227 

  22. 22 Glover DJ Clark DS 2015 Oligomeric assembly is required for chaperone activity of the filamentous γ-prefoldin FEBS J. 282 2985 2997 10.1111/febs.13341 26096656 

  23. 23 Jakob RP Koch JR Burmann BM Schmidpeter PA Hunkeler M Hiller S 2015 Dimeric structure of the bacterial extracellular foldase PrsA J. Biol. Chem. 290 3278 3292 10.1074/jbc.M114.622910 25525259 

  24. 24 Ideno A Yoshida T Iida T Furutani M Maruyama T 2001 FK506-binding protein of the hyperthermophilic archaeum, Thermococcus sp. KS-1, a cold-shock-inducible peptidyl-prolyl cis-trans isomerase with activities to trap and refold denatured proteins Biochem. J. 357 465 471 10.1042/bj3570465 11439096 

  25. 25 Maruyama T Suzuki R Furutani M 2004 Archaeal peptidyl prolyl cis-trans isomerases (PPIases) update 2004 Front. Biosci. 9 1680 1720 10.2741/1361 14977579 

  26. 26 Peng S Chu Z Lu J Li D Wang Y Yang S 2016 Co-expression of chaperones from P. furiosus enhanced the soluble expression of the recombinant hyperthermophilic α-amylase in E. coli Cell Stress Chaperon. 21 477 484 10.1007/s12192-016-0675-7 26862080 

  27. 27 Linden A Niehaus F Antranikian G 2000 Single-step purification of a recombinant thermostable α-amylase after solubilization of the enzyme from insoluble aggregates J. Chromatogr. B. 737 253 259 10.1016/S0378-4347(99)00364-3 

  28. 28 Wang L Zhou Q Chen H Chu Z Lu J Zhang Y 2007 Efficient solubilization, purification of recombinant extracellular α-amylase from Pyrococcus furiosus expressed as inclusion bodies in Escherichia coli J. Ind. Microbiol. Biotechnol. 34 187 192 10.1007/s10295-006-0185-1 17119903 

  29. 29 Su Y Liu C Fang H Zhang D 2020 Bacillus subtilis : a universal cell factory for industry, agriculture, biomaterials and medicine Microb. Cell Fact. 19 173 10.1186/s12934-020-01436-8 32883293 

  30. 30 Zhang K Su L Wu J 2020 Recent advances in recombinant protein production by Bacillus subtilis Annu. Rev. Food Sci. Technol. 11 295 318 10.1146/annurev-food-032519-051750 31905010 

  31. 31 Zhang K Su L Wu J 2018 Enhanced extracellular pullulanase production in Bacillus subtilis using protease-deficient strains and optimal feeding Appl. Microbiol. Biotechnol. 102 5089 5103 10.1007/s00253-018-8965-x 29675805 

  32. 32 Zhang K Duan X Wu J 2016 Multigene disruption in undomesticated Bacillus subtilis ATCC 6051a using the CRISPR/Cas9 system Sci. Rep-UK. 6 27943 10.1038/srep27943 27305971 

  33. 33 Wenzel M Müller A Siemann-Herzberg M Altenbuchner J 2011 Self-inducible Bacillus subtilis expression system for reliable and inexpensive protein production by high-cell-density fermentation Appl. Environ. Microbiol. 77 6419 6425 10.1128/AEM.05219-11 21803899 

  34. 34 Anagnostopoulos C Spizizen J 1961 Requirements for transformation in Bacillus subtilis J. Bacteriol. 81 741 746 10.1128/JB.81.5.741-746.1961 16561900 

  35. 35 Peters JM Colavin A Shi H Czarny TL Larson MH Wong S 2016 A comprehensive, CRISPR-based functional analysis of essential genes in bacteria Cell 165 1493 1506 10.1016/j.cell.2016.05.003 27238023 

  36. 36 Westers H Westers L Darmon E van Dijl JM Quax WJ Zanen G 2006 The CssRS two-component regulatory system controls a general secretion stress response in Bacillus subtilis FEBS J. 273 3816 3827 10.1111/j.1742-4658.2006.05389.x 16911528 

  37. 37 Caspers M Brockmeier U Degering C Eggert T Freudl R 2010 Improvement of Sec-dependent secretion of a heterologous model protein in Bacillus subtilis by saturation mutagenesis of the N-domain of the AmyE signal peptide Appl. Microbiol. Biotechnol. 86 1877 1885 10.1007/s00253-009-2405-x 20077115 

  38. 38 Freudl R 2018 Signal peptides for recombinant protein secretion in bacterial expression systems Microb. Cell Fact. 17 52 10.1186/s12934-018-0901-3 29598818 

  39. 39 Ohtaki A Kida H Miyata Y Ide N Yonezawa A Arakawa T 2008 Structure and molecular dynamics simulation of archaeal prefoldin: the molecular mechanism for binding and recognition of nonnative substrate proteins J. Mol. Biol. 376 1130 1141 10.1016/j.jmb.2007.12.010 18201719 

  40. 40 Brown I Dafforn TR Fryer PJ Cox PW 2013 Kinetic study of the thermal denaturation of a hyperthermostable extracellular α-amylase from Pyrococcus furiosus BBA-Proteins Proteom. 1834 2600 2605 10.1016/j.bbapap.2013.09.008 24063888 

  41. 41 Beadle BM Baase WA Wilson DB Gilkes NR Shoichet BK 1999 Comparing the thermodynamic stabilities of a related thermophilic and mesophilic enzyme Biochemistry 38 2570 2576 10.1021/bi9824902 10029552 

  42. 42 Smith JD Richardson NE Robinson AS 2005 Elevated expression temperature in a mesophilic host results in increased secretion of a hyperthermophilic enzyme and decreased cell stress Biochim. Biophys. Acta 1752 18 25 10.1016/j.bbapap.2005.07.016 16112628 

  43. 43 Szilágyi A Závodszky P 2000 Structural differences between mesophilic, moderately thermophilic and extremely thermophilic protein subunits: results of a comprehensive survey Structure 8 493 504 10.1016/S0969-2126(00)00133-7 10801491 

  44. 44 Zhang K 2018 Modification of Bacillus subtilis strain, promoter optimization and high-level expression of pullulanase. Doctor thesis Jiangnan University. 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로