$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

위성영상기반 증발스트레스지수를 활용한 필지단위 논 가뭄 모니터링
Drought Monitoring for Paddy Fields Using Satellite-derived Evaporative Stress Index 원문보기

한국농공학회논문집 = Journal of the Korean Society of Agricultural Engineers, v.63 no.3, 2021년, pp.47 - 57  

이희진 (Department of Bioresources and Rural Systems Engineering, National Agricultural Water Research Center, Hankyong National University) ,  남원호 (School of Social Safety and Systems Engineering, Institute of Agricultural Environmental Science, National Agricultural Water Research Center, Hankyong National University) ,  윤동현 (Department of Convergence of Information and Communication Engineering, Hankyong National University) ,  김하영 (School of Social Safety and Systems Engineering, Hankyong National University) ,  우승범 (School of Social Safety and Systems Engineering, Hankyong National University) ,  김대의 (Rural Research Institute, Korea Rural Community Corporation)

Abstract AI-Helper 아이콘AI-Helper

Drought monitoring over paddy field area is an important role as the frequency and intensity of drought due to climate change increases. This study analyzed the applicability of drought monitoring on paddy crops using MODIS-based field surveys. As a satellite-based drought index using evapotranspira...

주제어

표/그림 (11)

참고문헌 (27)

  1. Anderson, M. C., C. Hain, J. Otkin, X. Zhan, K. Mo, M. Svoboda, B. Wardlow, and A. Pimstein, 2013. An intercomparison of drought indicators based on thermal remote sensing and NLDAS-2 simulations w ith US drought monitor classifications. Journal of Hydrometeorology 14(4): 1035-1056. doi:110.1175/JHM-D-12-0140.1. 

  2. Anderson, M. C., C. R. Hain, B. Wardlow, A. Pimstein, J. R. Mecikalski, and W. P. Kustas, 2011. Evaluation of drought indices based on thermal remote sensing of evapotranspiration over the continental United States. Journal of Climate 24: 2025-2044. doi:10.1175/2010JCLI3812.1. 

  3. Anderson, M. C., J. M. Norman, J. R. Mecikalski, J. A. Otkin, and W. P. Kustas, 2007. A climatological study of evapotranspiration and moisture stress across the continental U.S. based on thermal remote sensing: I. model formulation. Journal of Geophysical Research 112(D10). doi:10.1029/2006JD007506. 

  4. Chung, S. O., and K. J. Park, 2004. Irrigation return flow measurements and analysis in a small size paddy area. Journal of Korea Water Resources Association 37(7): 517-526 (in Korean). doi:10.3741/JKWRA.2004.37.7.517. 

  5. Hong, E. M., W. H. Nam, J. Y. Choi, and Y. A. Pachepsky, 2016. Projected irrigation requirements for upland crops using soil moisture model under climate change in South Korea. Agricultural Water Management 165: 163-180. doi:10.1016/j.agwat.2015.12.003. 

  6. Jeon, M. G., W. H. Nam, H. J. Lee, E. M. Hong, S. H. Hwang, and S. O. Hur, 2021. Drought risk assessment for upland crops using satellite-derived evapotranspiration and soil available water capacity. Journal of the Korean Society of Hazard Mitigation 21(1): 25-33. doi:10.9798/KOSHAM.2021.21.1.25. 

  7. Kim, J. H., J. H. Lee, M. J. Park, and J. G. Joo, 2016. Effect of climate change scenarios and regional climate models on the drought severity-duration-frequency analysis. Journal of Korean Society of Hazard Mitigation 16(2): 351-361 (in Korean). doi:10.9798/KOSHAM.2016.16.2.351. 

  8. Lee, H. J., W. H. Nam, D. H. Yoon, E. M. Hong, D. E. Kim, M. D. Svoboda, T. Tadesse, and B. D. Wardlow, 2019. Satellite-based Evaporative Stress Index (ESI) as an indicator of agricultural drought in North Korea. Journal of the Korean Society of Agricultural Engineers 61(3): 1-14 (in Korean). doi:10.5389/KSAE.2019.61.3.001. 

  9. Lee, H. J., W. H. Nam, D. H. Yoon, E. M. Hong, T. G. Kim, J. H. Park, and D. E. Kim, 2020. Percentile approach of drought severity classification in Evaporative Stress Index for South Korea. Journal of the Korean Society of Agricultural Engineers 62(2): 63-73 (in Korean). doi:10.5389/KSAE.2020.62.2.063. 

  10. Ministry of Land Infrastructure and Transport (MLIT), 2002. 2001 Drought record research report. Sejong, Korea. 

  11. Monteith, J. L., 1965. Evaporation and environment. Symposium of the Society of Experimental Biology 19: 205-224. 

  12. Mun, Y. S., W. H. Nam, M. G. Jeon, H. J. Kim, K. Kang, J. C. Lee, T. H. Ha, and K. Y. Lee, 2020. Evaluation of regional drought vulnerability assessment based on agricultural water and reservoirs. Journal of the Korean Society of Agricultural Engineers 62(2): 97-109 (in Korean). doi:10.5389/KSAE.2020.62.2.97. 

  13. Nam, W. H., M. J. Hayes, D. A. Wilhite, T. Tadesse, M. D. Svoboda, and C. L. Knutson, 2014. Drought management and policy based on risk assessment in the context of climate change. Magazine of the Korean Society of Agricultural Engineers 56(2): 2-15 (in Korean). 

  14. Nam, W. H., M. J. Hayes, M. D. Svoboda, T. Tadesse, and D. A. Wilhite, 2015. Drought hazard assessment in the context of climate change for South Korea. Agricultural Water Management 160: 106-117. doi:10.1016/j.agwat.2015.06.029. 

  15. Nam, W. H., T. Tadesse, B. D. Wardlow, M. J. Hayes, M. D. Svoboda, E. M. Hong, Y. A. Pachepsky, and M. W. Jang, 2018. Developing the vegetation drought response index for South Korea (VegDRI-SKorea) to assess the vegetation condition during drought events. International Journal of Remote Sensing 39(5): 1548-1574. doi:10.1080/01431161.2017.1407047. 

  16. Nguyen, H., J. A. Otkin, M. C. Wheeler, P. Hope, B. Trewin, and C. Pudmenzky, 2020. Climatology and variability of the evaporative stress index and its suitability as a tool to monitor Australian drought. Journal of Hydrometeorology 21(10): 2309-2324. doi:10.1175/JHMD-20-0042.1. 

  17. Otkin, J. A., M. C. Anderson, C. Hain, I. E. Mladenova, J. B. Basara, and M. Svoboda, 2013. Examining rapid onset drought development using thermal infrared-based evaporative stress index. Journal of Hydrometeorology 14(4): 1057-1074. doi:10.1175/JHM-D-12-0144.1. 

  18. Otkin, J. A., M. C. Anderson, C. Hain, and M. Svoboda, 2014. Examining the relationship between drought development and rapid changes in the evaporative stress index. Journal of Hydrometeorology 15(3): 938-956. doi:10.1175/JHM-D-13-0110.1. 

  19. Otkin, J. A., M. Svoboda, E. D. Hunt, T. W. Ford, M. C. Anderson, C. Hain, and J. B. Basara, 2018. Flash droughts: A review and assessment of the challenges imposed by rapid-onset droughts in the United States. Bulletin of the American Meteorological Society 99(5): 911-919. doi:10.1175/BAMS-D-17-0149.1. 

  20. Rosenberg, N. J., 1979. Drought in the great plains-research on impact and strategies. In Proceeding of the Workshop on Research in Great Plains Drought Management Strategies, 26-28, University of Nebraska, Lincoln, NE. 

  21. Running, S. W., Q. Mu, M. Zhao, and A. Moreno, 2019. User's guide MODIS global terrestrial evapotranspiration (ET) product (MOD16A2/A3 and year-end gap-filled MOD16A2GF/A3GF) NASA earth observing system MODIS land algorithm (For collection 6). Washington, DC, USA: National Aeronautics and Space Administration. 

  22. Svoboda, M., D. LeComte, M. Hayes, R. Heim, K. Gleason, J. Angel, B. Rippey, R. Tinker, M. Palecki, D. Stooksbury, D. Miskus, and S. Stephens, 2002. The drought monitor. Bulletin of the American Meteorological Society 83(8): 1181-1190. doi:10.1175/1520-0477-83.8.1181. 

  23. Tadesse, T., J. F. Brown, and M. J. Hayes, 2005. A new approach for predicting drought-related vegetation stress: Integrating satellite, climate, and biophysical data over the U.S. central plains. ISPRS Journal of Photogrammetry and Remote Sensing 59(4): 244-253. doi:10.1016/j.isprsjprs.2005.02.003. 

  24. Yoon, D. H., W. H. Nam, H. J. Lee, E. M. Hong, T. G. Kim, A. K. Shin, and M. D. Svoboda, 2018. Application of evaporative stress index (ESI) for satellite-based agricultural drought monitoring in South Korea. Journal of the Korean Society of Agricultural Engineers 60(6): 121-131 (in Korean). doi:10.5389/KSAE.2018.60.6.121. 

  25. Yoon, D. H., W. H. Nam, H. J. Lee, E. M. Hong, S. Feng, B. D. Wardlow, T. Tadesse, M. D. Svoboda, M. J. Hayes, and D. E. Kim, 2020a. Agricultural drought assessment in East Asia using satellite-based indices. Remote Sensing 12(3): 444-459. doi:10.3390/rs12030444. 

  26. Yoon, D. H., W. H. Nam, H. J. Lee, E. M. Hong, and T. G. Kim, 2020b. Drought hazard assessment using MODIS-based evaporative stress index (ESI) and ROC analysis. Journal of the Korean Society of Agricultural Engineers 62(3): 51-61 (in Korean). doi:10.5389/KSAE.2020.62.3.051. 

  27. Zhong, Y., J. A. Otkin, M. C. Anderson, and C. Hain, 2020. Investigating the relationship between the evaporative stress index and land surface conditions in the contiguous United States. Journal of Hydrometeorology 21(7): 1469-1484. doi:10.1175/JHM-D-19-0205.1. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

FREE

Free Access. 출판사/학술단체 등이 허락한 무료 공개 사이트를 통해 자유로운 이용이 가능한 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로