$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

반성천 홍수경보 시스템을 위한 GIUH기반 한계홍수량 산정기법 비교연구
Comparison of the flow estimation methods through GIUH rainfall-runoff model for flood warning system on Banseong stream 원문보기

Journal of Korea Water Resources Association = 한국수자원학회논문집, v.54 no.5, 2021년, pp.347 - 354  

성기영 (경상국립대학교 토목공학과) ,  안유진 (경상국립대학교 토목공학과) ,  이태삼 (경상국립대학교 토목공학과)

초록
AI-Helper 아이콘AI-Helper

지난 수년간 하천 인근에서 홍수로 인하여 다양한 피해가 발생하고 있다. 이러한 홍수피해를 경감하기 위해 구조적 비구조적 대책들을 세워 홍수 경감에 노력하고 있으며, 중요한 비구조적 대책 중의 하나가 홍수경보시스템을 구축하는 것이다. 일반적으로 홍수경보시스템을 구축하기 위해서는 홍수경보 기준지점의 수위를 먼저 설정하고 이에 대응하는 한계유량을 산출한다. 그리고, 강우-유출모형(특히, GIUH)을 통하여 한계유량에 대응하는 경보강수량을 산정하는 방식을 택하고 있다. 특히 한계유량을 산출하는 경우, 다양한 연구에서 하천측량이 이루어지지 않은 점 때문에 Manning 공식을 변수로 사용하여 한계유량을 산출하여왔다. 이에 대한 적정성을 비교하기 위해 본 연구에서는 HEC-RAS 모형을 통하여 한계유량을 계산하였고 Manning 공식에서 나온 값과 비교하였다. 비교결과, 한계유량 산정공식(Manning 공식을 변수로 사용)에서 산출된 한계유량은 과다한 경보 강수량값을 채택하고 기존 설계강수량에 비해서도 매우 큰 값이 계산됨을 확인할 수 있었다. 이에 비해 HEC-RAS의 한계유량값은 적정한 경보강수량 값을 제시하였고 연평균 알람 기준에도 적정함을 알 수 있었다. 본 연구 결과를 통해, 현재 다양한 하천사업이 이루어져 대부분의 하천의 측량이 이루어진 상황에서 기존의 Manning식에 의한 한계유량 산출보다는 강우-유출모형(GIUH)으로부터 산정된 유량 자료를 입력조건으로 하여 HEC-RAS를 통한 한계유량 및 경계 수위를 산정 해야 하는 것이 보다 적정해 보인다.

Abstract AI-Helper 아이콘AI-Helper

In the past few years, various damages have occurred in the vicinity of rivers due to flooding. In order to alleviate such flood damage, structural and non-structural measures are being established, and one of the important non-structural measures is to establish a flood warning system. In general, ...

주제어

표/그림 (9)

참고문헌 (14)

  1. Ahn, S.J., Kim, J.G., Park, J.H., and Lee, H.Z. (2005). "Analysis of Flood Runoff using GIUH Model." Conference of Korea Water Resources Association 2005, KWRA, pp. 705-709. 

  2. Bamufleh, S., Al-Wagdany, A., Elfeki, A., and Chaabani, A. (2020). "Developing a geomorphological instantaneous unit hydrograph (GIUH) using equivalent Horton-Strahler ratios for flash flood predictions in arid regions." Geomatics, Natural Hazards and Risk, Vol. 11, No. 1, pp. 1697-1723. doi: 10.1080/19475705.2020.1811404 

  3. Chonnam National University (CNU) (2004). Gok-seong gun rainfall warning criteria alarming facilities, pp. 69-70. 

  4. GyeongNam (2016). River fundamental plan for banseong stream. MOLIT. 

  5. Kim, K.-W., Roh, J.-H., Jeon, Y.-W., and Yoo, C. (2003). "Analysis of rainfall effect on the GIUH characteristic velocity." Journal of Korea Water Resources Association, Vol. 35, No. 4, pp. 533-545. 

  6. Kim, Y., Tak, W., and Jun, K. (2018). "Automated rainfall warning system standards setting using GIS." Journal of Korea Society Hazard Mitigation, Vol. 18, No. 1, pp. 179-184. doi: 10.9798/KOSHAM.2018.18.1.179 

  7. Mohammadi, F., Fakheri Fard, A., and Ghorbani, M.A. (2019). "Application of cross-wavelet-linear programming-Kalman filter and GIUH methods in rainfall-runoff modeling." Environmental Earth Sciences, Vol. 78, No. 5. doi: 10.1007/s12665-019-8133-3 

  8. National Disaster Management Research Institute (NDMRI) (2016). Preliminary research on flash flood alert system advancement. Ulsan, pp. 146-149. 

  9. Oh, M.-J., Yang, I.-T., and Park, B.-S. (2006). "An analysis for goodness of fit on trigger runoff of flssh flood and topographic parameters using GIS." Journal of Korean Society for Geospatial Information Science, Vol. 14, No. 3, pp. 87-95. 

  10. Rodriguez-Iturbe, I., and Valdes, J.B. (1979). "The geomorphologic structure of hydrologic response." Water Resources Research, Vol. 15, No. 6, pp. 1409-1420. doi: 10.1029/WR015i006p01409 

  11. Rodriguez-Iturbe, I., Gonzalez-Sanabria, M., and Bras, R.L. (1982). "A geomorphoclimatic theory of the instantaneous unit hydrograph." Water Resources Research, Vol. 18, No. 4, pp. 877-886. doi: 10.1029/WR018i004p00877 

  12. Sahoo, R., and Jain, V. (2018). "Sensitivity of drainage morphometry based hydrological response (GIUH) of a river basin to the spatial resolution of DEM data." Computers and Geosciences, Vol. 111, pp. 78-86. doi: 10.1016/j.cageo.2017.10.001 

  13. Strahler, A.N. (1952). "Hypsometric (area-altitude) analysis of erosional topography." Bulletin of the Geological Society of America, Vol. 63, No. 11, pp. 1117-1142. doi: 10.1130/0016-7606(1952)63[1117:HAAOET]2.0.CO;2 

  14. Valdes, J.B., Fiallo, Y., and Rodriguez-Iturbe, I. (1979). "A rainfall-runoff analysis of the geomorphologic IUH." Water Resources Research, Vo. 15, No. 6, pp. 1421-1434. doi: 10.1029/WR015i006p01421 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로