$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

한국 남부지역 가로수종 잎 미세구조와 미세먼지 흡착량의 계절 변화: 가시나무, 종가시나무, 참가시나무, 동백나무, 왕벚나무 중심으로
Seasonal Changes in the Absorption of Particulate Matter and the Fine Structure of Street Trees in the Southern Areas, Korea: With a Reference to Quercus myrsinifolia, Quercus glauca, Quercus salicina, Camellia japonica, and Prunus × yedoensis 원문보기

한국산림과학회지 = Journal of korean society of forest science, v.110 no.2, 2021년, pp.129 - 140  

진언주 (국립산림과학원 산림바이오소재연구소) ,  윤준혁 (국립산림과학원 산림바이오소재연구소) ,  최명석 (경상대학교 환경산림과학부) ,  성창현 (국립산림과학원 산림바이오소재연구소)

초록
AI-Helper 아이콘AI-Helper

본 연구는 한국 남부지역의 주요 조경수 가시나무(Quercus myrsinifolia), 종가시나무(Quercus glauca), 참가시나무(Quercus salicina), 동백나무(Camellia japonica), 왕벚나무(Prunus × yedoensis) 등 5수종을 대상으로 계절별 미세먼지 흡착량 및 수종별 잎 표면 미세구조와의 관계를 연구하였다. 계절별 미세먼지 흡착량 범위는 1월(31.51~110.44 ㎍/cm2), 11월 (23.20~79.30 ㎍/cm2), 5월(22.68~76.90 ㎍/cm2), 8월(9.88~49.91 ㎍/cm2) 순으로, 8월보다 1월에 54.4% 더 높은 미세먼지 흡착량을 보였다. 잎 표면에 홈이 있고 털을 갖고 있으며, 왁스층 함량이 높은 Q. salicina는 미세먼지 입자 크기별 흡착량이 높게 유지되었으며, 광택이 있고 잎 표면이 매끄러우며, 왁스층 함량이 낮은 C. japonica와 Prunus × yedoensis는 계절별 미세먼지 흡착량이 낮았다. 엽면적 크기, 기공밀도 및 기공 길이의 증가는 PM 흡착량의 감소와 관련이 있고 반면, 잎 표피 거칠기, 왁스층 함량, 기공 폭의 증가는 PM 흡착량의 증가와 관련이 있었다. 또한, 잎 표면 왁스층 함량이 증가할수록 잎 표면 PM 흡착량도 증가하였으며, PM10, PM2.5 보다는 PM0.2와 관련이 높은 것으로 확인되었다. 또한, 앞으로 개별 수종에 대한 미세먼지 저감 효율을 정량적으로 판단할 수 있는 기준을 통한 저감 수종 선발과 더불어 미세먼지 저감을 위한 숲 조성 가이드라인 또한 제시되어야 할 것으로 판단된다.

Abstract AI-Helper 아이콘AI-Helper

The study investigates the correlation between the seasonal changes in the absorption of fine dusts and the fine structure of surface on each type of street tree, such as Quercus myrsinifolia, Quercus glauca, Quercus salicina, Camellia japonica, and Prunus × yedoensis in the southernareas of ...

주제어

표/그림 (13)

참고문헌 (47)

  1. Abhijith, K.V., Prashant Kumar., John Gallagher., Aonghus McNabola., Richard Baldauf., Francesco Pilla., Brian Broderick., Silvana Di Sabatino. and Beatrice Pulvirenti. 2017. Air pollution abatement performances of green infrastructure in open road and built-up street canyon environments - A review. Atmos. Environ 162: 71-86. 

  2. Abbey, T. and Rathier, T. 2005. Effects of Mycorrhizal Fungi, Biostimulants and Water Absorbing Polymers on the Growth and Survival of Four Landscape Plant Species. Journal of Environmental Horticulture 23(2): 180-111. 

  3. Bakker, M.I., Casado, B., Koerselman, J.W., Tolls, J. and Kolloffel, C. 2000. Polycyclic aromatic hydrocarbons in soil and plant samples from the vicinity of an oil refinery. Science of the Total Environment 263(1-3): 91-100. 

  4. Beckett, K.P., Freer-Smith, P.H. and Taylor, G. 2000. The Capture of Particulate Pollution by Trees at Five Contrasting Urban Sites. The International Journal of Urban Forestry 24(2-3): 209-230. 

  5. Burkhardt, J. Hygroscopic particles on leaves: nutrients or desiccants?. 2010. Ecol Monogr 80: 369-399. 

  6. Cavanagh, J-AE., Peyman, Z.R. and Wilson, J.G. 2009. Spatial attenuation of ambient particulate matter air pollution within an urbanised native forest patch. Urban Forestry & Urban Greening 8(1): 21-30. 

  7. Cho, D.G. 2019. Prioritization of Species Selection Criteria for Urban Fine Dust Reduction Planting. Korean Journal of Environment and Ecology 33(4): 472-480. 

  8. Dzierzanowski, K. and Gawronski, S.W. 2011. Use of trees for reducing particulate matter pollution in air. Challenges of Modern Technology 2(1): 69-73. 

  9. Dzierzanowski, K., Popek, R., Gawronska, H., Saebo, A.W. and Gawronski, S.W. 2011. Deposition of Particulate Matter of Different Size Fractions on Leaf Surfaces and in Waxes of Urban Forest Species. International Journal of Phytoremediation 13(10): 1037-1046. 

  10. Escobedo, F.J., Wagner, J.E., Nowak, D.J., Maza, Carmen Luz De la., Rodriguez, M., Daniel, E. and Crane, C. Analyzing the cost effectiveness of Santiago, Chile's policy of using urban forests to improve air quality. Journal of Environmental Management 86(1): 148-157. 

  11. Freer-Smith, P.H., El-Khatib, A.A. and Taylor, G. 2004. Capture of Particulate Pollution by Trees: A Comparison of Species Typical of Semi-Arid Areas (Ficus Nitida and Eucalyptus Globulus) with European and North American Species. Water, Air, and Soil Pollution 155; 173-187. 

  12. Freer-Smith, P.H., Beckett, K.P., Taylor, G. 2005. Deposition velocities to Sorbus aria, Acer campestre, Populus deltoides × trichocarpa 'Beaupre', Pinus nigra and × Cupressocyparis leylandii for coarse, fine and ultra-fine particles in the urban environment. Environmental Pollution 133(1): 157-167. 

  13. Gultz, P.G. 1994. Epicuticular leaf waxes in the evolution of the plant kingdom. J. Plant Physiol. 143, 453e464. 

  14. Han, S.H. 2019. Fine Dust and Dementia: Is Ambient Air Pollution Associated with Cognitive Health. Journal of the Korean Neurological Association 37(2): 135-143. 

  15. Han, D., Shen, H., Duan, W. and Chen, L. 2020. A review on particulate matter removal capacity by urban forests at different scales. Urban Forestry & Urban Greening 48: 126565. 

  16. Kardel, F., Wuyts, K., Maher, B.A., Hansard, R., Samson, R. 2011. Leaf saturation isothermal remanent magnetization (SIRM) as a proxy for particulate matter monitoring: Interspecies differences and in-season variation. Atmospheric Environment 45(29): 5164-5171. 

  17. Kim, K.J., Chintakunta, S., Kim, J.C., Jeong, N.R., Han, S.W., Kim, W.Y., You, S. and Kim, C. Analysis of particulate matter(PM) reduction efficiency according to the content of wax layer in leaves of landscaping plants. Journal of Applied Biological Chemistry 63(2): 161-168. 

  18. Kwon, S.J., Cha, S.J., Lee, J.K. and Park, J.H. 2020. Evaluation of accumulated particulate matter on roadside tree leaves and its metal content. Journal of Applied Biological Chemistry 63(2): 161-168. 

  19. Lara-Lopez, M.A., Cepa, J., Bongiovanni, A., Perez Garcia, A.M., Ederoclite, A., Castaneda, H., Fernandez Lorenzo, M., Povic, M. and Sanchez-Portal, M. 2010. A fundamental plane for field star-forming galaxies. Astron. Astrophys 521: L53. 

  20. Leonard, R.J., McArthur, C. and Hochuli, D.F. 2016. Particulate matter deposition on roadside plants and the importance of leaf trait combinations. Urban Forestry & Urban Greening 20(1): 249-253. 

  21. Liu, Y., Chien, W.M., Medvedev, I.O., Weldy, C.S., Luchtel, D.L., Rosenfeld, M.E. and Chain, M.T. 2013. Inhalation of diesel exhaust does not exacerbate cardiac hypertrophy or heart failure in two mouse models of cardiac hypertrophy. Part. Fibre Toxicol 10(1): 49. 

  22. Loomis, D., Yann, G., Lauby-Secretan, B., Ghissassi, F.E., Bouvard, V., Benbrahim-Tallaa, L., Guha, N., Baan, R., Mattock, H. and Straif, Kurt. 2013. The carcinogenicity of outdoor air pollution. The Lancet Oncology 14(13): 1262-1263. 

  23. Martins, C.M.C., Mesquita, S.M.M. and Vaz, W.L.C. 1999. Cuticular waxes of the Holm(Quercus ilex L. subsp. ballota (Desf.) Samp.) and Cork (Q. suber L.) Oaks. Phytochem Anal. 10, 1e5. 

  24. McDonald, A.G., Bealey, W.J., Fowler D., Dragosits, U., Skiba, U., Smith, R.I., Donovan, R.G., Brett, H.E., Hewitt, C.N. and Nemitz, E. 2007. Quantifying the effect of urban tree planting on concentrations and depositions of PM10 in two UK conurbations. Atmospheric Environment 42(38): 8455-8467. 

  25. McKinney, M.L. 2002. Urbanization, biodiversity, and conservation. Bioscience 52, 883e890. 

  26. Moreno, M.M., Azcarate, C. 2003. Concepciones Y Creencias De Los Profesores Universitarios De Matematicas Acerca De La Ense anza De Las Ecuaciones Diferenciales. Ense anza De Las Ciencias 21(2): 265-280. 

  27. Mo, L,. Ma, Z,. Xu, Y,. Sun, F,. Lun, X,. Liu, X,. Chen, J. and Yu, X. 2015. Assessing the capacity of plant species to accumulate particulate matterin Beijing, China. PLoS One 10(10): e0140664 

  28. Nawrot, T.S., Perez, L., Kunzli, N., Munters, E. and Nemery, B. 2011. Public health importance of triggers of myocardial infarction: a comparative risk assessment. The Lancet 377(9767): 732-740. 

  29. Neinhuis, C. and Barthlitt, W. 1997. Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 202; 1-8. 

  30. Nowak, D.J. 1994. Chicago's Urban Forest Ecosystem: Resulting of the Chicago Urban Forest Climate Project Chapter 5 Air Pollution Removal by Chicago's Urban Forest. 

  31. Park, S.M., Moon, K.J., Park, J.S., Kim, H.J., Ahn, J.Y. and Kim, J.S. 2012. Chemical Characteristics of Ambient Aerosol during Asian Dusts and High PM Episodes at Seoul Intensive Monitoring Site in 2009. Journal of Korean Society for Atmospheric Environment 28(3): 282-293. 

  32. Popek, R., Gawronska, H., Wrochna, M., Gawronski, S.W. and Saebo, A. 2013. Particulate Matter on Foliage of 13 Woody Species: Deposition on Surfaces and Phytostabilisation in Waxes-a 3-Year Study. International Journal of Phytoremediation 15(3): 245-256. 

  33. Prajapati, S.K. and Tripathi, B.D. 2008. Seasonal Variation of Leaf Dust Accumulation and Pigment Content in Plant Species Exposed to Urban Particulates Pollution. Plant and Environment Interaction 37(3): 865-870. 

  34. Saebo, A., Popek, R., Nawrot, B., Hanslin, H.M., Gawronska, H. and Gawronski, S.W. 2012. Plant species differences in particulate matter accumulation on leaf surfaces. Science of The Total Environment 427-428; 347-354. 

  35. Sgrigna, G., Saebo, A., Gawronski, S., Popek, R. and Calfapietra, C. Particulate Matter deposition on Quercus ilex leaves in an industrial city of central Italy. Environmental Pollution 197: 187-194. 

  36. Shahid, M., Dumat, C., Khalid, S., Schreck, E., Xiong, T. and Niazi, N.K. 2017. Foliar heavy metal uptake, toxicity and detoxification in plants: A comparison of foliar and root metal uptake. Journal of Hazardous Materials 325(5): 36-58. 

  37. Shao, C., Meng, L., Wang, M., Cui, C., Wang, B., Han, C.R., Xu, F. and Yang, J. 2019. Mimicking Dynamic Adhesiveness and Strain-Stiffening Behavior of Biological Tissues in Tough and Self-Healable Cellulose Nanocomposite Hydrogels. ACS Applied Materials & Interfaces 11(6): 5885-5895. 

  38. Shi, Z., Li, J., Huang, L., Wang, P., Wu, L., Ying, Q., Zhang, H., Lu, L., Liu, X., Liao, H. and Hu, J. 2017. Source apportionment of fine particulate matter in China in 2013 using a source-oriented chemical transport model. Science of the Total Environment 601-602; 1476-1487. 

  39. Song, Y., Maher, B.A., Li, F., Wang, X., Sun, X. and Zhang, H. 2015. Particulate matter deposited on leaf of five evergreen species in Beijing, China: Source identification and size distribution. Atmospheric Environment 105: 53-60. 

  40. Terzaghi, E., Wild, E., Zacchello, G., Bruno, E.L., Cerabolini., Jones, K.C. and Guardo, A.D. 2013. Forest Filter Effect: Role of leaves in capturing/releasing air particulate matter and its associated PAHs. Atmospheric Environment 74: 378-384. 

  41. Thorpe, A. and Harrison, R.M. 2008. Sources and properties of non-exhaust particulate matter from road traffic: A review. Science of the Total Environment 400: 270-282. 

  42. Urbat, M., Lehndorff, E. and Schwark, L. 2004. Biomonitoring of air quality in the Cologne conurbation using pine needles as a passive sampler-Part I : magneticproperties. Atmospheric Environment 38(23): 3781-3792. 

  43. Wang, B. et al. 2013. Properties and inflammatory effects of various size fractions of ambient particulate matter from Beijing on A549 and J774A.1 cells. Environmental Science & Technology 47: 10583-10590. 

  44. Wang, Y., Li, J., Jing, H., Zhang, Q., Jiang, J. and Biswas, P. 2015. Laboratory Evaluation and Calibration of Three Low-Cost Particle Sensors for Particulate Matter Measurement. Aerosol Science and Technology 49(11): 1063-1077. 

  45. WANR. 2013. National Environment Policy Nairobi, Kenya: Ministry of Environment, Water and Natural Resources. 

  46. WHO. Health aspects of air pollution with particulate matter, ozone and nitrogen dioxide. Report. 2003 on a WHO working group. Bonn; 2003. http://www.euro.who.int/_data/assets/pdf_file/0005/112199/E79097.pdf. 

  47. Yang, J., McBride, J., Zhou, P., Zou, X., Che, S. and Wang, W. 2005. The urban forest in Beijing and its role in air pollution reduction. Urban Forestry & Urban Greening 3(2): 65-78. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

FREE

Free Access. 출판사/학술단체 등이 허락한 무료 공개 사이트를 통해 자유로운 이용이 가능한 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로