$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

다수 업종의 교차분석을 통한 꽃게 및 대게 어획 시 온실가스 배출량의 정량적 분석
A quantitative analysis of greenhouse gases emissions from catching swimming crab and snow crab through cross-analysis of multiple fisheries 원문보기

수산해양기술연구 = Journal of the Korean Society of Fisheries and Ocean Technology, v.59 no.1, 2023년, pp.19 - 27  

이건호 (경상국립대학교 해양경찰시스템학과) ,  이지훈 (전남대학교 해양생산관리학과) ,  박수아 (전남대학교 수산과학과) ,  박민서 (전남대학교 수산과학과)

Abstract AI-Helper 아이콘AI-Helper

The interest in greenhouse gases (GHG) emitted from all industries is emerging as a very important issue worldwide. This is affecting not only the global warming, but also the environmentally friendly competitiveness of the industry. The fisheries sector is increasingly interested in greenhouse gas ...

주제어

참고문헌 (39)

  1. Aanondsen SA. 1997. Life cycle assessments of environmental?performance used as a tool in ship design (In Norwegian:?Livslopsanalyser for beregning av miljopavirkning brukt?som verktoy ved prosjektering av skip). M.Sc. Thesis,?Department of Marine Technology, Norwegian University?of Science and Technology, Trondheim, Norway. 1-56. 

  2. Aqustsson A, Ragnarsson E and Laxdal H. 1978. Fuel?consumption of Icelandic fishing vessels. Ægir-timarit?um sjavarutveg 71, 462-486. 

  3. Bae JH, Yang YS, Kim HY, Hwang BK, Lee CW, Park SB?and Lee J. 2019. A quantitative analysis of greenhouse?gas emissions from the major offshore fisheries. J Korean?Soc Fish Ocean Technol 55, 1-50. https://doi.org/10.3796/KSFOT.2019.55.1.050. 

  4. Choi SJ, Hong YS, Park GJ, Lee GS, Kim PS and Cho DH. 2016. A study on the development of air pollutants and?greenhouse gases emission factor and emission estimation?from the domestic costal shipping (III). National Institute?of Environmental Research R&D Report, 1-127. 

  5. Curtis HC, Graham K and Rossiter T. 2006. Options for?improving fuel efficiency in the UK fishing fleet. Sea?Fish Industry Authority & European Community. 1-48. 

  6. Ellingsen H and Aanondsen SA. 2006. Environmental impacts?of wild caught cod and farmed salmon - a comparison?with chicken. Int J Life Cycle Assess 11, 60-65. https://doi.org/10.1065/lca2006.01.236. 

  7. Ellingsen H, Olaussen JO and Utne IB. 2009. Environmental?analysis of the Norwegian fishery and aquaculture?industry - A preliminary study focusing on farmed?salmon. Mar Policy 33, 479-488. https://doi.org/10.1016/j.marpol.2008.11.003. 

  8. Florence AB, Michael ZH, Jorgen S and Alexis L. 2019. Life?cycle assessments of aquaculture systems: a critical review of reported findings with recommendations for?policy and system development. Rev Aquacult 11,?1061-1079. https://doi.org/10.1111/raq.12280. 

  9. Hospido A and Tyedmers P. 2005. Life cycle environmental?impacts of Spanish tuna fisheries. Fish Res 76, 174-186.?https://doi.org/10.1016/j.fishres.2005.05.016. 

  10. ISO 14020. 2000. Environmental labels and declarations -?General principles. ISO Geneva, Switzerland, 1-5.? 

  11. ISO 14040. 2006. Environmental management - Life cycle?assessment - Principles and framework. ISO Geneva,?Switzerland, 1-20. 

  12. Kang KM, Lee J and Shin DW. 2021. A quantitative analysis?of greenhouse gases emissions by multiple fisheries for?catching the same species (hairtail and small yellow?croaker). J Korean Soc Fish Ocean Technol 57, 149-161.?https://doi.org/10.3796/KSFOT.2021.57.2.149. 

  13. KFIP. 2022. Retrieved from http://www. fips.go.kr/jsp/sf/ss/ss_law_kind_list.jsp?menuDepth070105. Accessed August 2022. 

  14. Kim HY, Yang YS, Hwang BK and Lee J. 2017. A quantitative?analysis of greenhouse gas emissions from the major?coastal fisheries using the lca method. J Korean Soc Fish?Technol 53, 77-88. https://doi.org/10.3796/KSFT.2017.53.1.077. 

  15. Lee J and Lee CW. 2010. Low-Carbon trawl design with?analysis of a gear drag and calculation of construction?costs using numerical methods. J Kor Soc Fish Tech 46,?313-323. https://doi.org/10.3796/KSFT.2010.46.4.313. 

  16. Lee CW, Kim HS and Lee J. 2010a. Research of Low-carbon?emission marine production technology. Land Transport?and Maritime R&D Report, 1-573. 

  17. Lee DW, Lee JB, Kim YH and Jung SG. 2010b. Calculation?of Carbon Dixoide Emissions by South Korea's Fishery?Industry. Kor J Fish Aquat Sci 43, 78-82. https://doi.org/10.5657/kfas.2010.43.1.078. 

  18. Lee J and Lee CW. 2011. A quantitative analysis of GHG?emissions from the Korean offshore large scale fisheries?using an LCA method. Kor J Fish Aquat Sci 44, 383-389.?https://doi.org/10.5657/KFAS.2011.0383. 

  19. Lee J. 2013. A quantitative analysis of GHG emissions from?the Korean large scale purse seine fishery using LCA?method. J Kor Soc Fish Tech 49, 282-290. https://doi.org/10.3796/KSFT.2012.49.3.282. 

  20. Lee J, Lee CW and Kim JE. 2015. A quantitative analysis?of Greenhouse gas emissions from the danish seine?fishery using life cycle assessment. Kor J Soc Fish Aquat?Sci 48, 200-206. https://doi.org/10.5657/KFAS.2015.0200. 

  21. Lee J, Kim TH, Ellingsen H, Hognes ES and Hwang BK. 2018a. Energy consumption and greenhouse gas emission?of Korean offshore fisheries. J Ocean Univ China 17,?675-682. https://doi.org/10.1007/s11802-018-3511-0. 

  22. Lee J, Lee CW, Park SH, Kim JE, Park SB and Kim TH.?2018b. Development of a low-energy midwater trawl?with different combinations of trawl nets and trawl doors?through model experiments. Fish Sci 84, 323-334. https://doi.org/10.1007/s12562-017-1158-1. 

  23. Ling C, James SD and Gregory AK. 2013. Role of life cycle?assessment in sustainable aquaculture. Rev Aquacult 5,?61-71. https://doi.org/10.1111/j.1753-5131.2012.01080.x. 

  24. Park KH. 2004. Development of Triple Bottom Line integrated?model for environmental, economic and social evaluation?of construction project. Ph.D. Thesis, Department of?environmental engineering, Inha University, Korea, 1-237. 

  25. Pelletier N and Tyedmers P. 2007. Feeding farmed salmon:?Is organic better?. Aquaculture 272, 399-416. https://doi.org/10.1016/j.aquaculture.2007.06.024. 

  26. Prior D and Khaled R. 2009. Optimisation of Trawl Energy?Efficiency under Fishing Effort Constraint. In Proc. Of?the 9th International Workshop "DEMaT09", Nara, Japan.?163-176. 

  27. Ramin G, Suzanne EB, Kevan LM, Qiong Z and Maya AT. 2021. Life cycle assessment of aquaculture systems:?Does burden shifting occur with an increase in production?intensity? Aquac Eng 92, 102130. https://doi.org/10.1016/j.aquaeng.2020.102130. 

  28. Schau EM, Ellingsen H, Endal A and Aanondsen SA. 2009.?Energy consumption in the Norwegian fisheries. J?Cleaner Prod 17, 325-334. https://doi.org/10.1016/j.jclepro.2008.08.015. 

  29. Sterling D and Goldsworthy L. 2007. Energy efficient fishing:?A 2006 review - Part A - Alternative fuels and efficient?engines. Australian Government - Fisheries Research and?Development Corporation Report, 1-52. 

  30. Sterling D and Klaka K. 2007. Energy efficient fishing: A 2006?review - Part B - Hull characteristics and efficiency.?Australian Government - Fisheries Research and Development Corporation Report, 1-27. 

  31. The World Counts. 2022. Retrieved from https://www.theworldcounts.com/challenges/global-warming/global-co2-emissions.?Accessed October 2022. 

  32. Thrane M. 2004a. Environmental impacts from Danish fish?products - Hot spots and environmental policies. Ph.D.?Thesis, Department of Development and Planning,?Aalborg University, Denmark, 1-535. 

  33. Thrane M. 2004b. Energy consumption in the Danish fishery:?identification of key factors. J Ind Ecol 8, 223-239.?https://doi.org/10.1162/1088198041269427. 

  34. Thrane M. 2006. LCA of Danish fish products. New methods?and insights. Int J Life Cycle Assess 11, 66-74.?https://doi.org/10.1065/lca2006.01.232. 

  35. Tyedmers P. 2001. Energy consumed by North Atlantic?fisheries. Fisheries Centre Research Report. In: Zeller D,?Watson R, Pauly D, editors. Fisheries impacts on North?Atlantic ecosystems: catch, effort and national/regional?datasets, 9:3, Vancouver: Fisheries Centre, University of?British Columbia, 12-34. 

  36. Union of Concerned Scientists. 2022. Retrieved from https://www.ucsusa.org/resources/each-countrys-share-co2-emissions.?Accessed October 2022. 

  37. Winther U, Ziegler F, Hognes ES, Emanuelsson A, Sund V?and Ellingsen H. 2009. Carbon footprint and energy use?of Norwegian seafood products. SINTEF Fisheries and?Aquaculture Report, 1-89. 

  38. Ziegler F and Hausson PA. 2003. Emissions from fuel?combustion in Swedish cod fishery. J Cleaner Prod 11,?303-314. https://doi.org/10.1016/S0959-6526(02)00050-1. 

  39. Ziegler F. 2007. Environmental life cycle assessment of?seafood products from capture fisheries. Int J Life Cycle?Assess 12, 61. https://doi.org/10.1065/lca2006.11.286. 

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로