$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

선행 강우를 고려한 Sentinel-1 SAR 위성영상과 다중선형회귀모형을 활용한 토양수분 산정
Estimation of Soil Moisture Using Sentinel-1 SAR Images and Multiple Linear Regression Model Considering Antecedent Precipitations 원문보기

대한원격탐사학회지 = Korean journal of remote sensing, v.37 no.3, 2021년, pp.515 - 530  

정지훈 (건국대학교 대학원 사회환경플랜트공학과) ,  손무빈 (건국대학교 대학원 사회환경플랜트공학과) ,  이용관 (건국대학교 대학원 사회환경플랜트공학과) ,  김성준 (건국대학교 공과대학 사회환경공학부)

초록
AI-Helper 아이콘AI-Helper

본 연구에서는 Sentinel-1 C-band SAR(Synthetic Aperture Radar) 위성영상을 기반으로 다중선형회귀모형을 활용하여 금강 유역 상류에 위치한 용담댐 유역의 토양수분을 산정하였다. 10 m 공간 해상도의 Sentinel-1A/B SAR 영상은 6일 간격으로 2015년부터 2019년까지 5년 동안 구축하였고, SNAP(SentiNel Application Platform)을 사용하여 기하 보정, 방사 보정 및 잡음(Noise) 보정을 수행하고 VV 및 VH 편파 후방산란계수로 변환하였다. 토양수분 산정 모형의 검증자료로 TDR로 측정된 6개 지점의 실측 토양수분 자료를 구축하였으며, 수문학적 개념인 선행 강우를 고려하기 위해 동지점에 대한 강수량 자료를 구축하였다. 다중선형회귀모형은 전체 기간 및 계절별로 나누어 모의하였으며, 독립변수의 증감에 따른 상관성 분석을 진행하였다. 산정된 토양수분은 결정계수(R2)와 평균제곱근오차(RMSE)를 활용하여 검증하였다. 초지 지역에서 후방산란계수만을 이용한 토양 수분 산정 결과 R2가 0.13, RMSE가 4.83%으로 나타났으며 선행강우를 5일까지 사용했을 경우 R2가 0.37, RMSE가 4.11%로 상관성이 상승하는 모습을 보였다. 이 때, 토양수분의 계절별 변동성과 감소 패턴의 반영을 위해 무강우누적일수의 적용과 계절별 회귀식을 작성한 결과 R2가 0.69, RMSE가 2.88%로 상관성이 크게 상승하였다. SAR 기반 토양수분 추정 시 선행강우 및 무강우누적일수의 활용이 효과적이었다.

Abstract AI-Helper 아이콘AI-Helper

This study is to estimate soil moisture (SM) using Sentinel-1A/B C-band SAR (synthetic aperture radar) images and Multiple Linear Regression Model(MLRM) in the Yongdam-Dam watershed of South Korea. Both the Sentinel-1A and -1B images (6 days interval and 10 m resolution) were collected for 5 years f...

주제어

표/그림 (13)

참고문헌 (63)

  1. Anguela, T.P., M. Zribi, N. Baghdadi, and C. Loumagne, 2010. Analysis of local variation of soil surface parameters with TerraSAR-X radar data over bare agriculture fields, IEEE Transactions on Geoscience and Remote Sensing, 48(2): 874-881. 

  2. Attema, E.P.W. and F.T. Ulaby, 1978. Vegetation modeled as a water cloud, Radio Science, 13(2): 357-364. 

  3. Baghdadi, N., C. King, A. Chanzy, and J.P. Wigneron, 2002. An empirical calibration of the integral equation model based on SAR data, soil moisture and surface roughness measurement over bare soils, International Journal of Remote Sensing, 23(20): 4325-4340. 

  4. Baghdadi, N., M. Aubert, O. Cerdan, L. Franchisteguy, C. Viel, M. Eric, and J.F. Desprats, 2007. Operational mapping of soil moisture using synthetic aperture radar data: application to the Touch basin (France), Sensors, 7(10): 2458-2483. 

  5. Baghdadi, N., M. Choker, M. Zribi, M. Hajj, S. Paloscia, N. Verhoest, H. Lievens, F. Baup, and F. Mattia, 2016. A new empirical model for radar scattering from bare soil surfaces, Remote Sensing, 8(11): 920. 

  6. Baghdadi, N., M. Zribi, S. Paloscia, N.E. Verhoest, H. Lievens, F. Baup, and F. Mattia, 2015. Semi-empirical calibration of the integral equation model for co-polarized L-band backscattering, Remote Sensing, 7(10): 13626-13640. 

  7. Baghdadi, N., M.E. Hajj, M. Zribi, and I. Fayad, 2016. Coupling SAR C-band and optical data for soil moisture and leaf area index retrieval over irrigated grasslands, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9(3): 1229-1243. 

  8. Baghdadi, N., S. Gaultier, and C. King, 2002. Retrieving surface roughness and soil moisture from synthetic aperture radar (SAR) data using neural networks, Canadian Journal of Remote Sensing, 28(5): 701-711. 

  9. Benninga, H.J.F., R. van der Velde, and Z. Su, 2020. Sentinel-1 soil moisture content and its uncertainty over sparsely vegetated fields, Journal of Hydrology X, 9: 100066 

  10. Brocca, L., S. Hasenauer, T. Lacava, F. Melone, T. Moramarco, W. Wagner, W. Dorigo, P. Matgen, J. Martinez-Fernandez, P. Llorens, J. Latron, C. Martin, and M. Bittelli, 2011. Soil moisture estimation through ASCAT and AMSR-E sensors: An intercomparison and validation study across Europe, Remote Sensing of Environment, 115(12): 3390-3408. 

  11. Champion, I. and G. Gyot, 1991. Generalized formulation for semi-empirical radar models, Proc. of the 5th International Colloquium on the Spectral Signatures in Remote Sensing, Courchevel, FR, Jan. 14-18, pp. 269-272. 

  12. Chen, K.S., T.D. Wu, L. Tsang, Q. Li, J. Shi, and A.K. Fung, 2003. Emission of rough surfaces calculated by the integral equation method with comparison to three-dimensional moment method simulations, IEEE Transactions on Geoscience and Remote Sensing, 41(1): 90-101. 

  13. Chung, J., Y. Lee, and S. Kim, 2020. Research trends on estimation of soil moisture and hydrological components using synthetic aperture radar, Journal of the Korean Association of Geographic Information Studies, 23(3): 26-67 (in Korean with English abstract). 

  14. Dabrowska-Zielinska, K., J. Musial, A. Malinska, M. Budzynska, R. Gurdak, W. Kiryla, M. Bartold, and P. Grzybowski, 2018. Soil Moisture in the Biebrza Wetlands Retrieved from Sentinel-1 Imagery, Remote Sensing, 10(12): 1979. 

  15. Dubois, P.C., J. van Zyl, and T. Engman, 1995. Measuring soil moisture with imaging radars, IEEE Transactions on Geoscience and Remote Sensing, 33(4): 915-926. 

  16. Entekhabi, D., E.G. Njoku, P.E. O'Neill, K.H. Kellogg, W.T. Crow, W.N. Edelstein, J.K. Entin, S.D. Goodman, T.J. Jackson, J. Johnson, J. Kimball, J.R. Piepmeier, R.D. Koster, N. Martin, K.C. McDonald, M. Moghaddam, S. Moran, R. Reichle, J.C. Shi, M.W. Spencer, S.W. Thurman, L. Tsang, and J. Van Zyl, 2010. The soil moisture active passive (SMAP) mission, Proceeded of the IEEE, 98(5): 704-716. 

  17. Falloon, P., C.D. Jones, M. Ades, and K. Paul, 2011. Direct soil moisture controls of future global soil carbon changes: An important source of uncertainty, Global Biogeochemical Cycles, 25(3): GB3010. 

  18. Fung, A.K., Z. Li, and K.S. Chen, 1992. Backscattering from a randomly rough dielectric surface, IEEE Transactions on Geoscience and Remote Sensing, 30(2): 356-369. 

  19. Gillies, R.R. and T.N. Carlson, 1995. Thermal remote-sensing of surface soil-water content with partial vegetation cover for incorporation into climate-models, Journal of Applied Meteorology and Climatology, 34(4): 745-756. 

  20. Hachani, A., M. Ouessar, S. Paloscia, E. Santi, and S. Pettinato, 2019. Soil moisture retrieval from Sentinel-1 acquisitions in an arid environment in Tunisia: application of Artificial Neural Networks techniques, International Journal of Remote Sensing, 40(24): 9159-9180. 

  21. Holah, N., N. Baghdadi, M. Zribi, A. Bruand, and C. King, 2005. Potential of ASAR/ENVISAT for the characterization of soil surface parameters over bare agricultural fields, Remote Sensing of Environment, 96(1): 78-86. 

  22. Hoskera, A.K., G. Nico, M. Irshad Ahmed, and A. Whitbread, 2020. Accuracies of soil moisture estimations using a semi-empirical model over bare soil agricultural croplands from Sentinel-1 SAR data, Remote Sensing, 12(10): 1664. 

  23. Jang, W., Y. Lee, J. Lee, and S. Kim, 2019. RNN-LSTM based soil moisture estimation using Terra MODIS NDVI and LST, Journal of Korean Society of Agricultural Engineers, 61(6): 123-132 (in Korean with English abstract). 

  24. Jung, C., Y. Lee, J. Lee, and S. Kim, 2020. Performance Evaluation of the Multiple Quantile Regression Model for Estimating Spatial Soil Moisture after Filtering Soil Moisture Outliers, Remote Sensing, 2020, 12(10): 1678. 

  25. Jung, C., Y. Lee, Y. Cho, and S. Kim, 2017. A study of spatial soil moisture estimation using a multiple linear regression model and MODIS land surface temperature data corrected by conditional merging, Remote Sensing, 9(8): 870. 

  26. Karam, M.A., A.K. Fung, R.H. Lang, and N.S. Chauhan, 1992. Microwave scattering model for layered vegetation, IEEE Transactions on Geoscience and Remote Sensing, 30(4): 767-784. 

  27. Kerr, Y.H., P. Waldteufel, J.P. Wigneron, S. Delwart, F. Cabot, J. Boutin, M.J. Escorihuela, J. Font, N. Reul, C. Gruhier, S.E. Juglea, M.R. Drinkwater, A. Hahne, M. Martin-Neira, and S. Mecklenburg, 2010. The SMOS mission: new tool for monitoring key elements of the global water cycle, Proceeded of the IEEE, 98(5): 666-687. 

  28. Kim, M., K. Cho, S. Park, J. Cho, H. Moon, and S. Han, 2019. Development of Landslide Detection Algorithm Using Fully Polarimetric ALOS-2 SAR Data, Economic and Environmental Geology, 52(4): 313-322 (in Korean with English abstract). 

  29. Kim, J., Y. Park, J. Jeon, B. Engel, J. Ahn, Y. Park, K. Kim, J. Choi, and K. Lim, 2007. Evaluation of L-THIA WWW direct runoff estimation with AMC adjustment, Journal of Korean Society on Water Quality, 23(4): 474-481 (in Korean with English abstract). 

  30. Koo, P., D. Do, J. Kwon, and W. Song, 2002. Speckle filtering based on adaptive edge sharpening algorithm, Proc. of the Annual Conference of Institute of Electronics and Information Engineers: Signal Processing Society, Seoul, KR, Sep. 28, pp. 1-11 (in Korean with English abstract). 

  31. Lakhankar, T., H. Ghedira, and R. Khanbilvardi, 2006. Soil moisture retrieval from RADARSAT data: A Neuro-Fuzzy approach, Proc. of the IEEE International Symposium on Geoscience and Remote Sensing, Denver, CO, Jul. 31-Aug. 4, pp. 2328-2331. 

  32. Lee, J., 1980. Digital Image Enhancement and Noise Filtering by Use of Local Statistics, IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-2(2): 165-168. 

  33. Lee, J.S., J.H. Wen, T.L. Ainsworth, K.S. Chen, and A.J. Chen, 2009. Improved sigma filter for speckle filtering of SAR imagery, IEEE Transactions on Geoscience and Remote Sensing, 47(1): 202-213. 

  34. Lee, S., S. Hong, J. Cho, and Y. Lee, 2017. Experimental retrieval of soil moisture for cropland in South Korea using Sentinel-1 SAR data, Korean Journal of Remote Sensing, 33(6-1): 947-960 (in Korean with English abstract). 

  35. Lee, Y., C. Jung, and S. Kim, 2019. Spatial distribution of soil moisture estimates using a multiple linear regression model and Korean geostationary satellite (COMS) data, Agricultural Water Management, 213(1): 580-593 (in Korean with English abstract). 

  36. Lee, Y., C. Jung, Y. Jo, and S. Kim, 2017. Estimation of soil moisture using multiple linear regression model and COMS land surface temperature data, Journal of the Korean Society of Agricultural Engineers, 59(1): 11-20 (in Korean with English abstract). 

  37. Mathieu, R., M. Sbih, A.A. Viau, F. Anctil, L.E. Parent, and J. Boisvert, 2003. Relationships Between Radarsat SAR Data and Surface Moisture Content of Agricultural Organic Soils, International Journal of Remote Sensing, 24(24): 5265-5281. 

  38. Moriasi, D.N., J.G. Arnold, M.W. Van Liew, R.L. Binger, R.D. Harmel, and T. L. Veith, 2007. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations, Transactions of the ASABE, 50(3): 885-900. 

  39. Notarnicola, C., M. Angiulli, and F. Posa, 2006. Use of radar and optical remotely sensed data for soil moisture retrieval over vegetated areas, IEEE Transactions on Geoscience and Remote Sensing, 44(4): 925-935. 

  40. Notarnicola, C., M. Angiulli, and F. Posa, 2008. Soil moisture retrieval from remotely sensed data: neural network approach versus Bayesian method, IEEE Transactions on Geoscience and Remote Sensing, 46(2): 547-557. 

  41. Oh, Y., K. Sarabandi, and F. T. Ulaby, 1992. An empirical modal and an inversion technique for radar scattering from bare soil surfaces, IEEE Transactions on Geoscience and Remote Sensing, 30(2): 370-381. 

  42. Ottinger, M. and C. Kuenzer, 2020. Spaceborne L-Band Synthetic Aperture Radar data for geoscientific analyses in coastal Land applications: A Review, Remote Sensing, 12(14): 2228. 

  43. Park, J., H., Jung, C., Jang, and S., Kim, 2014. Assessing climate change impact on hydrological components of Yongdam Dam watershed using RCP emission scenarios and SWAT model, Journal of the Korean Society of Agricultural Engineers, 56(3): 19-29 (in Korean with English abstract). 

  44. Park, J., S. Ahn, S. Hwang, C. Jang, G. Park, and S. Kim, 2014. Evaluation of MODIS NDVI and LST for indicating soil moisture of forest areas based on SWAT modeling, Paddy and Water Environment, 12(s1): s77-s88 (in Korean with English abstract). 

  45. Pierdicca, N., P. Castracane, and L. Pulvirenti, 2008. Inversion of electromagnetic models for bare soil parameter estimation from multifrequency polarimetric SAR data, Sensors, 8(12): 8181-8200. 

  46. Porcello, L.J., N.G. Massey, R.B. Innes, and J.M. Marks, 1976. Speckle reduction in synthetic-aperture radars, Journal of the Optical Society of America, 66(11): 1305-1311. 

  47. Prakash, R., D. Singh, and N. P. Pathak, 2012. A Fusion approach to retrieve soil moisture with SAR and optical data, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 5(1): 196-206. 

  48. Said, S., U.C. Kothyari, and M.K. Arora, 2008. ANN-based soil moisture retrieval over bare and vegetated areas using ERS-2 SAR data, Journal of Hydrologic Engineering, 13(6): 461-475. 

  49. Sandholt, I., K. Rasmussen, and J. Andersen, 2002. A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status, Remote Sensing of Environment, 79(2-3): 213-224. 

  50. Srivastava, H.S., P. Patel, R.R. Navalgund, and Y. Sharma, 2008. Retrieval of surface roughness using multi-polarized Envisat-1 ASAR data, Geocarto International, 23(1): 67-77. 

  51. Srivastava, H.S., P. Patel, Y. Sharma, and R.R. Navalgund, 2009. Large-area soil moisture estimation using multi-incidence-angle RADARSAT-1 SAR data, IEEE Transactions on Geoscience and Remote Sensing, 47(8): 2528-2535. 

  52. Ulaby, F.T., C.T. Allen, G. Eger, and H. Kanemasu, 1984. Relating the microwave backscattering coefficient to leaf area index, Remote Sensing of Environment, 14(1-3): 113-133. 

  53. Ulaby, F.T., G.A. Bradley, and M.C. Dobson, 1979. Microwave backscatter dependence on surface roughness, soil moisture, and soil texture: part II-vegetation-covered soil, IEEE Transactions on Geoscience Electronics, 17(2): 33-40. 

  54. Ulaby, F.T., P.P. Batlivala, and M.C. Dobson, 1978. Microwave backscatter dependence on surface roughness, soil moisture, and soil texture: part I-bare soil, IEEE Transactions on Geoscience Electronics, 16(4): 286-295. 

  55. Ulaby, F.T., R.K. Moore, and A.K. Fung, 1986. Microwave Remote Sensing, Artech House, Norwood, MA, USA. 

  56. Wagner, W., G. Lemoine, and H. Rott, 1999. A method for estimating soil moisture from ERS scatterometer and soil data, Remote Sensing of Environment, 70(2): 191-207. 

  57. Wickel, A.J., T.J. Jackson, and E.F. Wood, 2001. Multi-temporal monitoring of soil moisture with RADARSAT SAR during the 1997 Southern Great Plains hydrology experiment, International Journal of Remote Sensing, 22(8): 1571-1583. 

  58. Y. Liu, J. Qian, and H. Yue, 2021. Combined Sentinel-1A with Sentinel-2A to estimate soil moisture in farmland, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14: 1292-1310. 

  59. Yu, Y. and S.T. Acton, 2002. Speckle reducing anisotropic diffusion, IEEE Transactions on Image Processing, 11(11): 1260-1270. 

  60. Zelenka, J.S., 1976. Comparison of continuous and discrete mixed-integrator processor, Journal of the Optical Society of America, 66(11): 1295-1304. 

  61. Zhang, D. and G. Zhou, 2016. Estimation of soil moisture from optical and thermal remote sensing: A review, Sensors, 16(8): 1308. 

  62. Zribi, M. and M. Dechambre, 2003. A new empirical model to retrieve soil moisture and roughness from C-band radar data, Remote Sensing of Environment, 84(1): 42-52. 

  63. Zribi, M., N. Baghdadi, N. Holah, and O. Fafin. New methodology for soil surface moisture estimation and its application to ENVISAT-ASAR multi-incidence data inversion, Remote Sensing of Environment, 96(3-4): 485-496. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로