$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

저수온기 참돔(Pagrus major) EP사료 내 동·식물성단백질 혼합물의 어분 대체
Fish Meal Replacement with a Mixture of Plant and Animal Protein Sources in Extruded Pellet (EP) Diet for Red Seabream Pagrus major at Low Water Temperature 원문보기

한국수산과학회지 = Korean journal of fisheries and aquatic sciences, v.54 no.3, 2021년, pp.350 - 357  

임종호 (제주대학교 해양생명과학과) ,  김민기 (제주대학교 해양생명과학과) ,  임현운 (제주대학교 해양생명과학과) ,  이봉주 (국립수산과학원 사료연구센터) ,  이승형 (국립수산과학원 사료연구센터) ,  허상우 (국립수산과학원 사료연구센터) ,  김강웅 (국립수산과학원 사료연구센터) ,  이경준 (제주대학교 해양과학연구소)

Abstract AI-Helper 아이콘AI-Helper

This study aimed to evaluate how fish meal (FM) replacement in diets with a mixture of animal and plant protein sources affect growth performance, feed utilization, hematological parameters and innate immunity of red seabream Pagrus major. A control FM diet was formulated to contain 65% FM (Con). Tw...

주제어

표/그림 (5)

AI 본문요약
AI-Helper 아이콘 AI-Helper

문제 정의

  • 이번 연구에서는 어분의 대체원료로써 동∙식물성 단백질 혼합물(가금 부산 물분, 수지박, 밀글루텐, SPC)의 이용가능성을 평가하고자 참돔을 대상으로 저수온기에 장기간의 사육실험을 하였다. 특히, 산업현장에서의 적용가능성을 높이고자 extruded pellet (EP) 사료로 실험사료를 제작하여 연구를 수행하였다.
  • 이번 연구에서는 어분의 대체원료로써 동∙식물성 단백질 혼합물(가금 부산 물분, 수지박, 밀글루텐, SPC)의 이용가능성을 평가하고자 참돔을 대상으로 저수온기에 장기간의 사육실험을 하였다. 특히, 산업현장에서의 적용가능성을 높이고자 extruded pellet (EP) 사료로 실험사료를 제작하여 연구를 수행하였다.
본문요약 정보가 도움이 되었나요?

참고문헌 (58)

  1. Abdul-Halim HH, Aliyu-Paiko M and Hashim R. 2014. Partial replacement of fish meal with poultry by-product meal in diets for snakehead Channa striata (Bloch, 1793), fingerlings. J World Aquac Soc 45, 233-241. https://doi.org/10.1111/jwas.12112. 

  2. Ahmed M, Liang H, Kasiya HC, Ji K, Ge X, Ren M, Liu B, Zhu X and Sun A. 2019. Complete replacement of fish meal by plant protein ingredients with dietary essential amino acids supplementation for juvenile blunt snout bream Megalobrama amblycephala. Aquac Nutr 25, 205-214. https://doi.org/10.1111/anu.12844. 

  3. AOAC (Association of Official Analytical Chemists). 2005. Official methods of analysis. Association of Official Analytical Chemists, Arlington, VA, U.S.A. https://doi.org/10.1002/0471740039.vec0284. 

  4. Ao T. 2011. Using exogenous enzymes to increase the nutritional value of soybean meal in poultry diet. In: El-Shemy H, Ed. Soybean and Nutrition. In Tech, New York, NY, U.S.A., 201-214. 

  5. Apper-Bossard E, Feneuil A, Wagner A and Respondek F. 2013. Use of vital wheat gluten in aquaculture feeds. Aquat Biosyst 9, 9-21. https://doi.org/10.1186/2046-9063-9-21. 

  6. Arnason J, Imsland AKD, Helmig T, Gunnarsson S and Kristjansson GO. 2018. Fishmeal replacement by mixed plant proteins and effect on growth and sensory attributes in on-growing turbot. Aquac Nutr 24, 1041-1047. https://doi.org/10.1111/anu.12642. 

  7. Barton BA and Lwama GK. 1991. Physiological changes in fish from stress in aquaculture with emphasis on the response and effects of corticosteroids. Annu Rev Fish Dis 1, 3-26. https://doi.org/10.1016/0959-8030(91)90019-G. 

  8. Berge GM, Grisdale-Helland B and Helland SJ. 1999. Soy protein concentrate in diets for Atlantic halibut Hippoglossus hippoglossus. Aquaculture 178, 139-148. https://doi.org/10.1016/S0044-8486(99)00127-1. 

  9. Biswas A, Araki H, Sakata T, Nakamori T, Kato K and Takii K. 2017. Fish meal replacement by soy protein from soymilk in the diets of red seabream Pagrus major. Aquac Nutr 23, 1379-1389. https://doi.org/10.1111/anu.12513. 

  10. Biswas A, Araki H, Sakata T, Nakamori T and Takii K. 2019. Optimum fish meal replacement by soy protein concentrate from soymilk and phytase supplementation in diet of red seabream Pagrus major. Aquaculture 506, 51-59. https://doi.org/10.1016/j.aquaculture.2019.03.023. 

  11. Burr GS, Wolters WR, Barrows FT and Hardy RW. 2012. Replacing fishmeal with blends of alternative proteins on growth performance of rainbow trout Oncorhynchus mykiss, and early or late stage juvenile Atlantic salmon Salmo salar. Aquaculture 334-337, 110-116. https://doi.org/10.1016/j.aquaculture.2011.12.044. 

  12. Bui HTD, Khosravi S, Fournier V, Herault M and Lee KJ. 2014. Growth performance, feed utilization, innate immunity, digestibility and disease resistance of juvenile red seabream Pagrus major fed diets supplemented with protein hydrolysates. Aquaculture 418-419, 11-16. https://doi.org/10.1016/j.aquaculture.2013.09.046. 

  13. Cheng Z, Ai Q, Mai K, Xu W, Ma H, Li Y and Zhang J. 2010. Effects of dietary canola meal on growth performance, digestion and metabolism of Japanese seabass Lateolabrax japonicus. Aquaculture 305, 102-108. https://doi.org/10.1016/j.aquaculture.2010.03.031. 

  14. Choi W, Hamidoghli A, Bae J, Won S, Choi YH, Kim KW, Lee BJ, Hur SW, Han H and Bai SC. 2020. On-farm evaluation of dietary animal and plant proteins to replace fishmeal in subadult olive flounder Paralichthys olivaceus. Fish Aquatic Sci 23, 22. https://doi.org/10.1186/s41240-020-00169-4. 

  15. Chou RL, Her BY, Su MS, Hwang G, Wu YH and Chen HY. 2004. Substituting fish meal with soybean meal in diets of juvenile cobia Rachycentron canadum. Aquaculture 229, 325-333. https://doi.org/10.1016/S0044-8486(03)00395-8. 

  16. Cruz-Suarez LE, Nieto-Lopez M, Guajardo-Barbosa C, Tapia-Salazar M, Scholz U and Ricque-Marie D. 2007. Replacement of fish meal with poultry by-product meal in practical diets for Litopenaeus vannamei, and digestibility of the tested ingredients and diets. Aquaculture 272, 466-476. https://doi.org/10.1016/j.aquaculture.2007.04.084. 

  17. Dawood MAO, Koshio S, Ishikawa M and Yokoyama S. 2015. Effects of partial substitution of fish meal by soybean meal with or without heat-killed Latobacillus plantarum (LP20) on growth performance, digestibility, and immune response of amberjack Seriola dumerili juveniles. Biomed Res Int 2015, 132-135. https://doi.org/10.1155/2015/514196. 

  18. Daniel N. 2018. A review on replacing fish meal in aqua feeds using plant protein sources. Int J Fish Aquat Stud 6, 164-179. 

  19. Ellis AE. 1990. Serum antiprotease in fish. In: Techniques in fish immunology, (ed. by JS Stolen, TC Fletcher, DP Anderson, WB Roberson and WB Van Muiswinkel), SOS Publication, Fair Haven, CT, U.S.A., 95-99. 

  20. FAO (Food and Agriculture Organization). 2021. Global aquaculture production (online query). Retrieved from http://www.fao.org/fishery/statistics/global-aquaculture-production/en on Mar 03, 2021. 

  21. Furuita H, Takeuchi T, Toyota M and Watanabe T. 1996. EPA and DHA requirements in early juvenile red seabream using HUFA enriched artemia nauplii. Fish Sci 62, 246-251. http://doi.org/10.2331/fishsci.62.246. 

  22. Galkanda-Arachchige HSC, Wilson AE and Davis DA. 2020. Success of fishmeal replacement through poultry by-product meal in aquaculture feed formulations: a meta-analysis. Rev Aquac 12, 1624-1636. https://doi.org/10.1111/raq.12401. 

  23. Gisbert E, Mozanzadeh MT, Kotzamanis Y and Esteevez A. 2016. Weaning wild flathead grey mullet Mugil cephalus fry with diets with different levels of fish meal substitution. Aquaculture 462, 92-100. https://doi.org/10.1016/j.aquaculture.2016.04.035. 

  24. Glencross B, Evans D, Dods K, McCafferty P, Hawkins W, Maas R and Sipsas S. 2005. Evaluation of the digestible value of lupin and soybean protein concentrates and isolates when fed to rainbow trout Oncorhynchus mykiss, usingeither stripping or settlement faecal collection methods. Aquaculture 245, 211-220. https://doi.org/10.1016/j.aquaculture.2004.11.033. 

  25. Helland SJ and Grisdale-Helland B. 2006. Replacement of fish meal with wheat gluten in diets for Atlantic halibut Hippoglossus hippoglossus: Effect on whole-body amino acid concentrations. Aquaculture 261, 1363-1370. https://doi.org/10.1016/j.aquaculture.2006.09.025. 

  26. Hertrampf JW and Piedad-Pascual F. 2000. Meat by-product meals. In: Handbook on Ingredients for Aquaculture Feeds. Springer, Dordrecht, Nederland, 291-301. 

  27. Hua K, Cobcroft JM, Cole A, Condon K, Jerry DR, Mangott A, Praeger C, Vucko MJ, Zeng C, Zenger K and Strugnell JM. 2019. The future of aquatic protein: implications for protein sources in aquaculture diets. One Earth 1, 316-329. https://doi.org/10.1016/j.oneear.2019.10.018. 

  28. Jalili R, Tukmechi A, Agh N, Noori F and Ghasemi A. 2013. Replacement of dietary fish meal with plant protein sources in rainbow trout Oncorhynchus mykiss; effect on growth performance, immune responses, blood indices and disease resistance. Iran J Fish Sci 12, 577-591. http://aquaticcommons.org/id/eprint/22624. 

  29. Jiang J, Feng L, Tang L, Liu Y, Jiang W and Zhou X. 2015. Growth rate, body composition, digestive enzymes and transaminase activities, and plasma ammonia concentration of different weight Jian carp (Cyprinus carpio var. Jian). Anim Nutr 1, 373-377. https://doi.org/10.1016/j.aninu.2015.12.006. 

  30. Kader MA, Koshio S, Ishikawa M, Yokoyama S and Buldul M. 2010. Supplemental effects of some crude ingredients in improving nutritive values of low fishmeal diets for red seabream Pagrus major. Aquaculture 308, 136-144. https://doi.org/10.1016/j.aquaculture.2010.07.037. 

  31. Kikuchi K. 1999. Use of defatted soybean meal as a substitute for fish meal in diets of Japanese flounder Paralichthys olivaceus. Aquaculture 179, 3-11. https://doi.org/10.1016/S0044-8486(99)00147-7. 

  32. Kim KW, Kim SS, Jeong JB, Jeon YJ, Kim KD, An CM and Lee KJ. 2011. Effects of dietary fluid on growth performance, immune responses, blood components, and disease resistance against Edwardsiella tarda and Streptococcus iniae in olive flounder Paralichthys olivaceus. Korean J Fish Aquat Sci 44, 644-652. https://doi.org/10.5657/KFAS.2011.0644. 

  33. Kim SS, Oh DH, Cho SJ, Seo SH, Han HS and Lee KJ. 2014. Evaluation of acid-concentrated soybean meal as a fishmeal replacement and its digestibility in diets for juvenile olive flounder Paralichthys olivaceus. Korean J Fish Aquat Sci 47, 824-831. http://dx.doi.org/10.5657/KFAS.2014.0824. 

  34. Kim MG, Lee CR, Shin JH, Lee BJ, Kim KW and Lee KJ. 2019a. Effects of fish meal replacement in extruded pellet diet on growth, feed utilization and digestibility in olive flounder Paralichthys olivaceus. Korean J Fish Aquat Sci 52, 149-158. https://doi.org/10.5657/KFAS.2019.0149. 

  35. Kim MG, Shin JH, Lee CR, Lee BJ, Hur SW, Lim SG and Lee KJ. 2019b. Evaluation of a mixture of plant protein source as a partial fish meal replacement in diets for juvenile olive flounder Paralichthys olivaceus. Korean J Fish Aquat Sci 52, 374-381. https://doi.org/10.5657/KFAS.2019.0374. 

  36. Kim MG, Lim HW, Lee BJ, Hur SW, Lee SH, Kim KW and Lee KJ. 2020. Replacing fish meal with a mixture of plant and animal protein source in the diets of juvenile olive flounder Paralichthys olivaceus. Korean J Fish Aquat Sci 53, 577-582. https://doi.org/10.5657/KFAS.2020.0577. 

  37. Kissinger KR, Garciia-Ortega A and Trushenski JT. 2016. Partial fish meal replacement by soy protein concentrate, squid and algal meals in low fish-oil diets containing Schizochytrium limacinum for longfin yellowtail Seriola rivoliana. Aquaculture 452, 37-44. https://doi.org/10.1016/j.aquaculture.2015.10.022. 

  38. KOSIS (Korean Statistical Information Service). 2021. Expenditure per aquaculture. Retrieved from http://kosis.kr/statisticsList/statisticsListIndex.do?menuIdM_01_01&vwcdMT_ZTITLE&parmTabIdM_01_01#SelectStatsBoxDiv on Jun 25, 2021. 

  39. Krogdahl A, Penn M, Thorsen J, Resfstie S and Bakke AM. 2010. Important antinutrients in plant feedstuffs for aquaculture: an update on recent findings regarding responses in salmonids. Aquac Nutr 41, 333-344. https:// doi.org/10.1111/j.1365-2109.2009.02426.x. 

  40. Kumari J and Sahoo PK. 2005. Effects of cyclophosphamide on the immune system and disease resistance of asian catfish Clarias batrachus. Fish Shellfish Immunol 19, 307-316. https://doi.org/10.1016/j.fsi.2005.01.008. 

  41. Lee SM, Lee Jy, Kang YJ and Hur SB. 1993. Effects of dietary n-3 highly unsaturated fatty acids on growth and biochemical changes in the Korean rockfish Sebastes schlegeli II. Chages of blood chemistry and properties of lliver cells. J Aquac 6, 107-123. 

  42. Lim HW, Kim MG, Shin JH, Shin JB, Hur SW, Lee BJ and Lee KJ. 2020. Evaluation of three plant proteins for fish meal replacement in diet for growing olive flounder Paralichthys olivaceus. Korean J Fish Aquat Sci 53, 464-470. https://doi.org/10.5657/KFAS.2020.0464. 

  43. Lim SJ, Kim SS, Ko GY, Song JW, Oh DH, Kim JD, Kim JU and Lee KJ. 2011. Fish meal replacement by soybean meal in diets for tiger puffer, Takijugu rubripes. Aquaculture 313, 165-170. https://doi.org/10.1016/j.aquaculture.2011.01.007. 

  44. Magnadottir B. 2006. Innate immunity of fish (overview). Fish shellfish Immunol 20, 137-151. https://doi.org/10.1016/j.fsi.2004.09.006. 

  45. Mohammed HH, Brown TL, Beck BH, Yildirim-Aksoy M, Eljack RM and Peatman E. 2018. The effects of dietary inclusion of a Saccharomyces cerevisiae fermentation product in a commercial catfish ration on growth, immune readiness, and columnaris disease susceptibility. J Appl Aquac 31, 193-209. https://doi.org/10.1080/10454438.2018.1499576. 

  46. Metcalfe LD and Schmitz AA. 1961. The rapid preparation of fatty acid esters for gas chromatographic analysis. Anal Chem 33, 363-364. https://doi.org/10.1021/ac60171a016. 

  47. Najafabadi HJ, Moghaddam HN, Pourreza J, Shahroudi FE and Golian A. 2007. Determination of chemical composition, mineral contents, and protein quality of poultry by-product meal. Int J Poult Sci 6, 875-882. https://doi.org/10.3923/ijps.2007.875.882. 

  48. NRC (National Research Council). 2011. Nutrient requirements of fish and shrimp. The National Academy Press, Washington DC, U.S.A. 

  49. Pedro ND, Guijarro AI, Lopez-Patino MA, Martinez-Alvarez R and Delgado MJ. 2005. Daily and seasonal variations in haematological and blood biochemical parameters in the tench Tinca tinca Linnaeus, 1758. Aquac Res 36, 1185-1196. https://doi.org/10.1111/j.1365-2109.2005.01338.x. 

  50. Rossi W and Davis DA. 2014. Meat and bone meal as an alternative for fish meal in soybean meal-based diets for Florida pompano, Trachinotus carolinus L. J World Aquacult Soc 45, 613-624. https://doi.org/10.1111/jwas.12155. 

  51. Scerra M, Foti F, Caparra P, Cilione C, Lutra B, Lamanna P and Chies L. 2016. Influence of partial substitution of dietary marine orgin feed stuffs by a mixture of extruded pea seed meal and animal orgin feedstuffs on fatty acid composition of fillet in sea bass Dicentrarchus labrax. Ital J Anim Sci 15, 696-700. https://doi.org/10.1080/1828051X.2016.1229586. 

  52. Siwicki AK and Anderson DP. 1993. Nonspecific defense mechanisms assay in fish: II. Potential killing activity of neutrophils and macrophages, lysozyme activity in serum and organs and total immunoglobulin level in serum. In: Fish disease diagnosis and prevention methods. Wydawnictwo Instytutu Rybactwa Strodladowego, Olsztyn, Poland, 105-112. 

  53. Song JW, Park SH, Lee CR and Lee KJ. 2013. Effects of dietary supplementation of a citrus by-product on growth performance, innate immunity and tolerance of low water temperature in red seabream Pagrus major. Korean J Fish Aquat Sci 46, 399-406. http://dx.doi.org/10.5657/KFAS.2013.0399. 

  54. Storebakken T, Shearer KD and Roem AJ. 2000. Growth, uptake and retention of nitrogen and phosphorus, and absorption of other minerals in Atlantic salmon Salmo salar fed diets with fish meal and soy-protein concentrate as the main sources of protein. Aquac Nutr 6, 103-108. https://doi.org/10.1046/j.1365-2095.2000.00135.x. 

  55. Takeuchi T, Toyota M, Satoh S and Watanabe T. 1990. Requirement of juvenile red seabream Pagrus major for eicosapetaenoic and docosahexaenoic acids. Nippon Suisan Gakkai Shi 56, 1263-1269. https://doi.org/10.2331/suisan.56.1263. 

  56. Torrecillas S, Mompel D, Caballero MJ, Montero D, Merrifield D, Rodiles A, Robaina L, Zamorano MJ, Karalazos V, Kaushik S and Izquierdo M. 2017. Effect of fishmeal and fish oil replacement by vegetable meals and oils on gut health of European sea bass Dicentrarchus labrax. Aquaculture 468, 386-398. https://doi.org/10.1016/j.aquaculture.2016.11.005. 

  57. Valente LMP, Cabral EM, Sousa V, Cunha LM and Fernandes JMO. 2016. Plant protein blends in diets for senegaless sole affect skeletal muscle growth, flesh texture and the expression of related genes. Aquaculture 453, 77-85. https://doi.org/10.1016/j.aquaculture.2015.11.034. 

  58. Ye JD, Wang K, Li FD, Sun YZ and Liu XH. 2011. Incorporation of a mixture of meat and bone meal, poultry by-product meal, blood meal and corn gluten meal as a replacement for fish meal in practical diets of Pacific white shrimp Litopenaeus vannamei at two dietary protein levels. Aquac Nutr 17, e337-e347. https://doi.org/10.1111/j.1365-2095.2010.00768.x. 

저자의 다른 논문 :

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로