$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

CRISPR/Cas 진단의 원리와 현황
The Principle and Trends of CRISPR/Cas Diagnosis 원문보기

Journal of biomedical engineering research : the official journal of the Korean Society of Medical & Biological Engineering, v.42 no.3, 2021년, pp.125 - 142  

박지웅 (대구경북첨단의료산업진흥재단, 첨단의료기기개발지원센터, 진단의료기기팀) ,  강봉근 (대구경북첨단의료산업진흥재단, 첨단의료기기개발지원센터, 진단의료기기팀) ,  신화희 (대구경북첨단의료산업진흥재단, 첨단의료기기개발지원센터, 진단의료기기팀) ,  신준근 (대구경북첨단의료산업진흥재단, 첨단의료기기개발지원센터, 진단의료기기팀)

Abstract AI-Helper 아이콘AI-Helper

The POCT (point-of-care test) sensing that has been a fast-developing field is expected to be a next generation technology in health care. The POCT sensors for the detection of proteins, small molecules and especially nucleic acids have lately attracted considerable attention. According to the World...

주제어

표/그림 (11)

참고문헌 (107)

  1. Kosack CS, Page AL, Klatser PR A Guide to Aid the Selection of Diagnostic Tests. Bull. World Health Organ. 2017;95: 639-645. 

  2. Abudayyeh OO, Gootenberg JS, Konermann S, et al. C2c2 Is a Single-Component Programmable RNA-Guided RNA-Targeting CRISPR Effector. Science (80-.). 2016;353. 

  3. East-Seletsky A, O'Connell MR, Knight SC, et al. Two Distinct RNase Activities of CRISPR-C2c2 Enable Guide-RNA Processing and RNA Detection. Nature 2016;538:270-273. 

  4. Gootenberg JS, Abudayyeh OO, Lee JW, et al. Nucleic Acid Detection with CRISPR-Cas13a/C2c2. Science (80-.). 2017; 356:438-442. 

  5. Ishino Y, Shinagawa H, Makino K, et al. Nucleotide Sequence of the Iap Gene, Responsible for Alkaline Phosphatase Isoenzyme Conversion in Escherichia Coli, and Identification of the Gene Product. J. Bacteriol. 1987;169:5429-5433. 

  6. Bolotin A, Quinquis B, Sorokin A, et al. Clustered Regularly Interspaced Short Palindrome Repeats (CRISPRs) Have Spacers of Extrachromosomal Origin. Microbiology 2005; 151:2551-2561. 

  7. Mojica FJM, Diez-Villasenor C, Garcia-Martinez J, et al. Intervening Sequences of Regularly Spaced Prokaryotic Repeats Derive from Foreign Genetic Elements. J. Mol. Evol. 2005; 60:174-182. 

  8. Chen JS, Doudna JA The Chemistry of Cas9 and Its CRISPR Colleagues. Nat. Rev. Chem. 2017;1. 

  9. Nishimasu H, Ran FA, Hsu PD, et al. Crystal Structure of Cas9 in Complex with Guide RNA and Target DNA. Cell 2014;156:935-949. 

  10. Slaymaker IM, Mesa P, Kellner MJ, et al. High-Resolution Structure of Cas13b and Biochemical Characterization of RNA Targeting and Cleavage. Cell Rep. 2019;26:3741-3751.e5. 

  11. Gasiunas G, Barrangou R, Horvath P, et al. Cas9-CrRNA Ribonucleoprotein Complex Mediates Specific DNA Cleavage for Adaptive Immunity in Bacteria. Proc. Natl. Acad. Sci. U. S. A. 2012;109:2579-2586. 

  12. Makarova KS, Haft DH, Barrangou R, et al. Evolution and Classification of the CRISPR-Cas Systems. Nat. Rev. Microbiol. 2011;9:467-477. 

  13. Cong L, Ran FA, Cox D, et al. Multiplex Genome Engineering Using CRISPR/Cas Systems. Science (80-.). 2013;339:819-823. 

  14. Jinek M, Chylinski K, Fonfara I, et al. A Programmable Dual-RNA-Guided DNA Endonuclease in Adaptive Bacterial Immunity. Science (80-.). 2012;337:816-821. 

  15. Mali P, Yang L, Esvelt KM, et al. RNA-Guided Human Genome Engineering via Cas9. Science (80-.). 2013;339: 823-826. 

  16. Qi LS, Larson MH, Gilbert LA, et al. Repurposing CRISPR as an RNA-Γuided Platform for Sequence-Specific Control of Gene Expression. Cell 2013;152:1173-1183. 

  17. Li Y, Li S, Wang J, et al. CRISPR/Cas Systems towards Next-Generation Biosensing. Trends Biotechnol. 2019;37: 730-743. 

  18. Hsu PD, Scott DA, Weinstein JA, et al. DNA Targeting Specificity of RNA-Guided Cas9 Nucleases. Nat. Biotechnol. 2013;31:827-832. 

  19. Jiang F, Zhou K, Ma L, et al. A Cas9-Guide RNA Complex Preorganized for Target DNA Recognition. Science (80-.). 2015;348:1477-1481. 

  20. Pickar-Oliver A, Gersbach CA The next Generation of CRISPR-Cas Technologies and Applications. Nat. Rev. Mol. Cell Biol. 2019;20:490-507. 

  21. Makarova KS, Wolf YI, Iranzo J, et al. Evolutionary Classification of CRISPR-Cas Systems: A Burst of Class 2 and Derived Variants. Nat. Rev. Microbiol. 2020;18:67-83. 

  22. Chen JS, Ma E, Harrington LB, et al. CRISPR-Cas12a Target Binding Unleashes Single-Stranded DNase Activity. Science (80-.). 2018;360:436-439. 

  23. Strecker J, Jones S, Koopal B, et al. Engineering of CRISPR-Cas12b for Human Genome Editing. Nat. Commun. 2019;10. 

  24. Li SY, Cheng QX, Li XY, et al. CRISPR-Cas12a-Assisted Nucleic Acid Detection. Cell Discov. 2018;4:18-21. 

  25. Lei C, Li S-Y, Liu J-K, et al. The CCTL (Cpf1-Assisted Cutting and Taq DNA Ligase-Assisted Ligation) Method for Efficient Editing of Large DNA Constructs in Vitro. Nucleic Acids Res. 2017;45:e74. 

  26. Abudayyeh OO, Gootenberg JS, Konermann S, et al. C2c2 Is a Single-Component Programmable RNA-Guided RNA-Targeting CRISPR Effector. Science (80-. ). 2016;353:aaf5573. 

  27. Abudayyeh OO, Gootenberg JS, Essletzbichler P, et al. RNA Targeting with CRISPR-Cas13. Nature 2017;550:280-284. 

  28. Myhrvold C, Freije CA, Gootenberg JS, et al. Field-Deployable Viral Diagnostics Using CRISPR-Cas13. Science (80-.). 2018;360:444-448. 

  29. Gootenberg JS, Abudayyeh OO, Kellner MJ, et al. Multiplexed and Portable Nucleic Acid Detection Platform with Cas13, Cas12a and Csm6. Science (80-.). 2018;360:439-444. 

  30. Konermann S, Lotfy P, Brideau NJ, et al. Transcriptome Engineering with RNA-Targeting Type VI-D CRISPR Effectors. Cell 2018;173:665-676.e14. 

  31. Harrington LB, Burstein D, Chen JS, et al. Programmed DNA Destruction by Miniature CRISPR-Cas14 Enzymes. Science (80-.). 2018;362:839-842. 

  32. Karvelis T, Bigelyte G, Young JK, et al. PAM Recognition by Miniature CRISPR-Cas12f Nucleases Triggers Programmable Double-Stranded DNA Target Cleavage. Nucleic Acids Res. 2020;48:5016-5023. 

  33. Hu JH, Miller SM, Geurts MH, et al. Evolved Cas9 Variants with Broad PAM Compatibility and High DNA Specificity. Nature 2018;556:57-63. 

  34. Chatterjee P, Jakimo N, Jacobson JM Minimal PAM Specificity of a Highly Similar SpCas9 Ortholog Pranam. Sci. Adv. 2018;1-11. 

  35. Slaymaker IM, Gao L, Zetsche B, et al. Rationally Engineered Cas9 Nucleases with Improved Specificity. Science (80-.). 2016;351:84 LP-88. 

  36. Kleinstiver BP, Sousa AA, Walton RT, et al. Engineered CRISPR-Cas12a Variants with Increased Activities and Improved Targeting Ranges for Gene, Epigenetic and Base Editing. Nat. Biotechnol. 2019;37:276-282. 

  37. Xiong E, Jiang L, Tian T, et al. Simultaneous Dual-Gene Diagnosis of SARS-CoV-2 Based on CRISPR/Cas9-Mediated Lateral Flow Assay. Angew. Chemie 2021;133:5367-5375. 

  38. Li S, Gu Y, Lyu Y, et al. Integrated Graphene Oxide Purification-Lateral Flow Test Strips (IGOP-LFTS) for Direct Detection of PCR Products with Enhanced Sensitivity and Specificity. Anal. Chem. 2017;89:12137-12144. 

  39. Kasetsirikul S, Shiddiky MJA, Nguyen N-T Challenges and Perspectives in the Development of Paper-Based Lateral Flow Assays. Microfluid. Nanofluidics 2020;24:17. 

  40. Bai J, Lin H, Li H, et al. Cas12a-Based On-Site and Rapid Nucleic Acid Detection of African Swine Fever. Front. Microbiol. 2019;10:1-9. 

  41. Chang Y, Deng Y, Li T, et al. Visual Detection of Porcine Reproductive and Respiratory Syndrome Virus Using CRISPR-Cas13a. Transbound. Emerg. Dis. 2020;67:564-571. 

  42. Kaminski MM, Alcantar MA, Lape IT, et al. A CRISPR-Based Assay for the Detection of Opportunistic Infections Post-Transplantation and for the Monitoring of Transplant Rejection. Nat. Biomed. Eng. 2020;4:601-609. 

  43. Mukama O, Yuan T, He Z, et al. A High Fidelity CRISPR/Cas12a Based Lateral Flow Biosensor for the Detection of HPV16 and HPV18. Sensors Actuators, B Chem. 2020;316. 

  44. Sullivan TJ, Dhar AK, Cruz-Flores R, et al. Rapid, CRISPR-Based, Field-Deployable Detection Of White Spot Syndrome Virus In Shrimp. Sci. Rep. 2019;9:1-7. 

  45. Tsou JH, Leng Q, Jiang F A CRISPR Test for Detection of Circulating Nuclei Acids. Transl. Oncol. 2019;12:1566-1573. 

  46. Wang X, Xiong E, Tian T, et al. Clustered Regularly Interspaced Short Palindromic Repeats/Cas9-Mediated Lateral Flow Nucleic Acid Assay. ACS Nano 2020;14:2497-2508. 

  47. Wang L, Shen X, Wang T, et al. A Lateral Flow Strip Combined with Cas9 Nickase-Triggered Amplification Reaction for Dual Food-Borne Pathogen Detection. Biosens. Bioelectron. 2020; 165:112364. 

  48. Hu M, Yuan C, Tian T, et al. Single-Step, Salt-Aging-Free, and Thiol-Free Freezing Construction of AuNP-Based Bioprobes for Advancing CRISPR-Based Diagnostics. J. Am. Chem. Soc. 2020;142:7506-7513. 

  49. Mukama O, Wu J, Li Z, et al. An Ultrasensitive and Specific Point-of-Care CRISPR/Cas12 Based Lateral Flow Biosensor for the Rapid Detection of Nucleic Acids. Biosens. Bioelectron. 2020;159:112143. 

  50. Green AA, Silver PA, Collins JJ, et al. Toehold Switches: De-Novo-Designed Regulators of Gene Expression. Cell 2014;159:925-939. 

  51. Pardee K, Green AA, Takahashi MK, et al. Rapid, Low-Cost Detection of Zika Virus Using Programmable Biomolecular Components. Cell 2016;165:1255-1266. 

  52. Qiu X-YY, Zhu LL-YY, Zhu C-SS, et al. Highly Effective and Low-Cost MicroRNA Detection with CRISPR-Cas9. ACS Synth. Biol. 2018;7:807-813. 

  53. Yuan C, Tian T, Sun J, et al. Universal and Naked-Eye Gene Detection Platform Based on the Clustered Regularly Interspaced Short Palindromic Repeats/Cas12a/13a System. Anal. Chem. 2020;92:4029-4037. 

  54. Gootenberg JS, Abudayyeh OO, Lee JW, et al. Nucleic Acid Detection with CRISPR-Cas13a/C2c2. Science (80-.). 2017; 356:438 LP-442. 

  55. Zhou R, Li Y, Dong T, et al. A Sequence-Specific Plasmonic Loop-Mediated Isothermal Amplification Assay with Orthogonal Color Readouts Enabled by CRISPR Cas12a. Chem. Commun. 2020;56:3536-3538. 

  56. Hajian R, Balderston S, Tran T, et al. Detection of Unamplified Target Genes via CRISPR-Cas9 Immobilized on a Graphene Field-Effect Transistor. Nat. Biomed. Eng. 2019;3:427-437. 

  57. Weckman NE, Ermann N, Gutierrez R, et al. Multiplexed DNA Identification Using Site Specific DCas9 Barcodes and Nanopore Sensing. ACS Sensors 2019;4:2065-2072. 

  58. Yang W, Restrepo-Perez L, Bengtson M, et al. Detection of CRISPR-DCas9 on DNA with Solid-State Nanopores. Nano Lett. 2018;18:6469-6474. 

  59. English MA, Soenksen LR, Gayet R V, et al. Programmable CRISPR-Responsive Smart Materials. Science (80-.). 2019; 365:780 LP-785. 

  60. Nouri R, Jiang Y, Lian XL, et al. Sequence-Specific Recognition of HIV-1 DNA with Solid-State CRISPR-Cas12a-Assisted Nanopores (SCAN). ACS Sensors 2020;5:1273-1280. 

  61. Bruch R, Baaske J, Chatelle C, et al. CRISPR/Cas13a-Powered Electrochemical Microfluidic Biosensor for Nucleic Acid Amplification-Free MiRNA Diagnostics. Adv. Mater. 2019;31: 1905311. 

  62. Dai Y, Somoza RA, Wang L, et al. Exploring the Trans-Cleavage Activity of CRISPR-Cas12a (Cpf1) for the Development of a Universal Electrochemical Biosensor. Angew. Chemie - Int. Ed. 2019;58:17399-17405. 

  63. Xu W, Jin T, Dai Y, et al. Surpassing the Detection Limit and Accuracy of the Electrochemical DNA Sensor through the Application of CRISPR Cas Systems. Biosens. Bioelectron. 2020;155:112100. 

  64. Zhang D, Yan Y, Que H, et al. CRISPR/Cas12a-Mediated Interfacial Cleaving of Hairpin DNA Reporter for Electrochemical Nucleic Acid Sensing. ACS Sensors 2020;5:557-562. 

  65. Katzmeier F, Aufinger L, Dupin A, et al. A Low-Cost Fluorescence Reader for in Vitro Transcription and Nucleic Acid Detection with Cas13a. PLoS One 2019;14:1-17. 

  66. Tycko J, Myer VE, Hsu PD Methods for Optimizing CRISPR-Cas9 Genome Editing Specificity. Mol. Cell 2016;63:355-370. 

  67. Anderson KR, Haeussler M, Watanabe C, et al. CRISPR Off-Target Analysis in Genetically Engineered Rats and Mice. Nat. Methods 2018;15:512-514. 

  68. Tsai SQ, Wyvekens N, Khayter C, et al. Dimeric CRISPR RNA-Guided FokI Nucleases for Highly Specific Genome Editing. Nat. Biotechnol. 2014:32:569-576. 

  69. Zhang Y, Qian L, Wei W, et al. Paired Design of DCas9 as a Systematic Platform for the Detection of Featured Nucleic Acid Sequences in Pathogenic Strains. ACS Synth. Biol. 2017;6:211-216. 

  70. Li L, Li S, Wu N, et al. HOLMESv2: A CRISPR-Cas12b-Assisted Platform for Nucleic Acid Detection and DNA Methylation Quantitation SI. ACS Synth. Biol. 2019;3:1-5. 

  71. Dong H, Lei J, Ding L, et al. MicroRNA: Function, Detection, and Bioanalysis. Chem. Rev. 2013;113:6207-6233. 

  72. Shan Y, Zhou X, Huang R, et al. High-Fidelity and Rapid Quantification of MiRNA Combining CrRNA Programmability and CRISPR/Cas13a Trans-Cleavage Activity. Anal. Chem. 2019;91:5278-5285. 

  73. Myhrvold C, Freije CA, Gootenberg JS, et al. Field-Deployable Viral Diagnostics Using CRISPR-Cas13. Science (80-.). 2018;360:444-448. 

  74. Shao N, Han X, Song Y, et al. CRISPR-Cas12a Coupled with Platinum Nanoreporter for Visual Quantification of SNVs on a Volumetric Bar-Chart Chip. Anal. Chem. 2019;91:12384-12391. 

  75. He Q, Yu D, Bao M, et al. High-Throughput and All-Solution Phase African Swine Fever Virus (ASFV) Detection Using CRISPR-Cas12a and Fluorescence Based Point-of-Care System. Biosens. Bioelectron. 2020;154. 

  76. Qin P, Park M, Alfson KJ, et al. Rapid and Fully Microfluidic Ebola Virus Detection with CRISPR-Cas13a. ACS Sensors 2019;4:1048-1054. 

  77. Yin K, Ding X, Li Z, et al. Dynamic Aqueous Multiphase Reaction System for One-Pot CRISPR-Cas12a-Based Ultra-sensitive and Quantitative Molecular Diagnosis. Anal. Chem. 2020;92:8561-8568. 

  78. Qin P, Park M, Alfson KJ, et al. Rapid and Fully Microfluidic Ebola Virus Detection with CRISPR-Cas13a. ACS Sensors 2019;4:1048-1054. 

  79. Wu X, Scott DA, Kriz AJ, et al. Genome-Wide Binding of the CRISPR Endonuclease Cas9 in Mammalian Cells. Nat. Biotechnol. 2014;32:670-676. 

  80. Kuscu C, Arslan S, Singh R, et al. Genome-Wide Analysis Reveals Characteristics of off-Target Sites Bound by the Cas9 Endonuclease. Nat. Biotechnol. 2014;32:677-683. 

  81. O'Geen H, Henry IM, Bhakta MS, et al. A Genome-Wide Analysis of Cas9 Binding Specificity Using ChIP-Seq and Targeted Sequence Capture. Nucleic Acids Res. 2015;43:3389-3404. 

  82. Kleinstiver BP, Pattanayak V, Prew MS, et al. High-Fidelity CRISPR-Cas9 Nucleases with No Detectable Genome-Wide off-Target Effects. Nature 2016;529:490-495. 

  83. Chen JS, Dagdas YS, Kleinstiver BP, et al. Enhanced Proof-reading Governs CRISPR-Cas9 Targeting Accuracy. Nature 2017;550:407-410. 

  84. Kocak DD, Josephs EA, Bhandarkar V, et al. Increasing the Specificity of CRISPR Systems with Engineered RNA Secondary Structures. Nat. Biotechnol. 2019;37:657-666. 

  85. Ke Y, Huang S, Ghalandari B, et al. Hairpin-Spacer CrRNAEnhanced CRISPR/Cas13a System Promotes the Specificity of Single Nucleotide Polymorphism (SNP) Identification. Adv. Sci. 2021;8:1-11. 

  86. Zhang K, Deng R, Teng X, et al. Direct Visualization of SingleNucleotide Variation in MtDNA Using a CRISPR/Cas9-Mediated Proximity Ligation Assay. J. Am. Chem. Soc. 2018;140:11293-11301. 

  87. Walton RT, Christie KA, Whittaker MN, et al. Unconstrained Genome Targeting with Near-PAMless Engineered CRISPR-Cas9 Variants. Science (80-.). 2020;368:290-296. 

  88. Anderson EM, Haupt A, Schiel JA, et al. Systematic Analysis of CRISPR-Cas9 Mismatch Tolerance Reveals Low Levels of off-Target Activity. J. Biotechnol. 2015;211:56-65. 

  89. Pattanayak V, Lin S, Guilinger JP, et al. High-Throughput Profiling of off-Target DNA Cleavage Reveals RNA-Programmed Cas9 Nuclease Specificity. Nat. Biotechnol. 2013;31:839-843. 

  90. Ran FA, Hsu PD, Lin CY, et al. Double Nicking by RNA-Guided CRISPR Cas9 for Enhanced Genome Editing Specificity. Cell 2013;154:1380-1389. 

  91. Park J-W, Lee SJ, Ren S, et al. Acousto-Microfluidics for Screening of SsDNA Aptamer. Sci. Rep. 2016;6:27121. 

  92. Kleinstiver BP, Tsai SQ, Prew MS, et al. Genome-Wide Specificities of CRISPR-Cas Cpf1 Nucleases in Human Cells. Nat. Biotechnol. 2016;34:869-874. 

  93. Strohkendl I, Saifuddin FA, Rybarski JR, et al. Kinetic Basis for DNA Target Specificity of CRISPR-Cas12a. Mol. Cell 2018;71:816-824.e3. 

  94. Sundaresan R, Parameshwaran HP, Yogesha SD, et al. RNA-Independent DNA Cleavage Activities of Cas9 and Cas12a. Cell Rep. 2017;21:3728-3739. 

  95. Dincer C, Bruch R, Kling A, et al. Multiplexed Point-of-Care Testing - XPOCT. Trends Biotechnol. 2017;35:728-742. 

  96. Li Y, Liu L, Liu G CRISPR/Cas Multiplexed Biosensing: A Challenge or an Insurmountable Obstacle? Trends Biotechnol. 2019;37:792-795. 

  97. Zhou W, Hu L, Ying L, et al. A CRISPR-Cas9-Triggered Strand Displacement Amplification Method for Ultrasensitive DNA Detection. Nat. Commun. 2018;9:1-11. 

  98. Wang L, Zhao P, Si X, et al. Rapid and Specific Detection of Listeria Monocytogenes With an Isothermal Amplification and Lateral Flow Strip Combined Method That Eliminates False-Positive Signals From Primer-Dimers. Front. Microbiol. 2020;10:1-13. 

  99. Wu H, He J song, Zhang F, et al. Contamination-Free Visual Detection of CaMV35S Promoter Amplicon Using CRISPR/Cas12a Coupled with a Designed Reaction Vessel: Rapid, Specific and Sensitive. Anal. Chim. Acta 2020;1096:130-137. 

  100. Wu H, Qian C, Wu C, et al. End-Point Dual Specific Detection of Nucleic Acids Using CRISPR/Cas12a Based Portable Biosensor. Biosens. Bioelectron. 2020;157:112153. 

  101. Peng L, Zhou J, Liu G, et al. CRISPR-Cas12a Based Aptasensor for Sensitive and Selective ATP Detection. Sensors Actuators, B Chem. 2020;320:128164. 

  102. Li H, Li M, Yang Y, et al. Aptamer-Linked CRISPR/Cas12a-Based Immunoassay. Anal. Chem. 2021;93:3209-3216. 

  103. Xiong Y, Zhang J, Yang Z, et al. Functional DNA Regulated CRISPR-Cas12a Sensors for Point-of-Care Diagnostics of Non-Nucleic-Acid Targets. J. Am. Chem. Soc. 2020;142:207-213. 

  104. Wang R, Qian C, Pang Y, et al. OpvCRISPR: One-Pot Visual RT-LAMP-CRISPR Platform for SARS-Cov-2 Detection. Biosens. Bioelectron. 2021;172:112766. 

  105. Nouri R, Tang Z, Dong M, et al. CRISPR-Based Detection of SARS-CoV-2: A Review from Sample to Result. Biosens. Bioelectron. 2021;178:113012. 

  106. Zhu X, Wang X, Li S, et al. Rapid, Ultrasensitive, and Highly Specific Diagnosis of COVID-19 by CRISPR-Based Detection. ACS Sensors 2021;0-7. 

  107. Rahimi H, Salehiabar M, Barsbay M, et al. CRISPR Systems for COVID-19 Diagnosis. ACS Sensors 2021. 

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로