$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] 탄화수소 항공유의 흡열반응 성능향상을 위한 촉매 분해 및 수증기 개질 기술분석
Analysis of Catalytic Cracking and Steam Reforming Technologies for Improving Endothermic Reaction Performance of Hydrocarbon Aviation Fuels 원문보기

한국추진공학회지 = Journal of the Korean Society of Propulsion Engineers, v.25 no.2, 2021년, pp.98 - 109  

이형주 (Department of Mechanical Engineering, Pukyong National University)

초록
AI-Helper 아이콘AI-Helper

극초음속 비행체용 능동냉각시스템의 전체적인 운용 성능을 결정하는 주요 요소는 크게 탄화수소흡열연료, 재생냉각 채널, 시스템 소재 및 구조로 구분되며, 그 중에서도 효율적인 재생냉각시스템 개발을 위한 일련의 연구는 탄화수소 항공유흡열반응 성능 향상으로부터 시작된다. 따라서 이전 연구에서는 탄화수소 항공유 자체의 흡열분해 특성에 대한 광범위한 연구 동향을 정리하였으며, 본 연구에서는 그에 대한 후속 연구로서 효과적인 흡열분해 특성 개선 및 성능 향상 방안으로 다양하게 시도되고 있는 촉매 분해와 수증기 개질 연구들에 대한 세부기술 분석을 수행하였다.

Abstract AI-Helper 아이콘AI-Helper

Fundamental parameters describing overall operational characteristics of active cooling systems of a hypersonic flight vehicle are mainly classified into endothermic hydrocarbon fuels, regenerative cooling channels, and materials and system structures. Of primary importance is the improvement of end...

Keyword

참고문헌 (36)

  1. Van Wie, D.M., D'Alessio, S.M., and White M.E., "Hypersonic Air-breathing Propulsion," Johns Hopkins APL Technology Digest, Vol. 26, No. 4, pp. 430-437, 2005. 

  2. https://news.joins.com/article/22878621 

  3. Tang, M. and Chase, R.L., "The quest for hypersonic flight with air-breathing propulsion," 15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, AIAA 2008-2546, 2008. 

  4. National Research Council, Review and Evaluation of the Air Force Hypersonic Technology Program, National Academy Press, Washington D.C., pp. 5-17, 1998. 

  5. Pace, D., "Scramjet Fuel Choices: Hydrogen versus Hydrocarbons," Journal of University of New South Wales at ADFA, Vol. 1, pp. 1-12, 2007. 

  6. Sobel, D.R. and Spadaccini, L.J., "Hydrocarbon fuel cooling technologies for advanced propulsion," ASME Journal of Engineering for Gas Turbines and Power, Vol. 119, No. 2, pp. 344-351, 1997. 

  7. Edwards, T., "Liquid fuels and propellants for aerospace propulsion: 1903-2003," Journal of Propulsion and Power, Vol. 19, No. 6, pp. 1089-1107, 2003. 

  8. Choi, H., Lee, H.J., and Hwnag, K., "Research activities about characteristics of fuel injection and combustion using endothermic fuel," Journal of the Korean Society of Propulsion Engineers, Vol. 17, No. 4, pp. 73-80, 2013. 

  9. Boudreau, A.H., "Hypersonic air-breathing propulsion efforts in the Air Force Research Laboratory," 13th AIAA/CIRA International Space Planes and Hypersonic Systems and Technologies Conference, AIAA 2005-3255, 2005. 

  10. Zhong, Z., Wang, Z., and Sun, M., "Effects of fuel cracking on combustion characteristics of a supersonic model combustor," Acta Astronautica, Vol. 110, pp. 1-8, 2015. 

  11. Lee, H.J., "Technical analysis of thermal decomposition characteristics of liquid hydrocarbon fuels for a regenerative cooling system of hypersonic vehicles," Journal of Aerospace System Engineering, Vol. 14, No. 4, pp. 32-39, 2020. 

  12. Coordinating Research Council, Handbook of Aviation Fuel Properties, 3rd ed., CRC Report No. 635, 2004. 

  13. Lander, H. and Nixon, A.C., "Endothermic fuels for hypersonic vehicles," Journal of Aircraft, Vol. 8, No. 4, pp. 200-207, 1971. 

  14. Edwards, T., "Cracking and deposition behavior of supercritical hydrocarbon aviation fuels," Combustion Science and Technology, Vol. 178, pp. 307-334, 2006. 

  15. Edwards, T., "USAF Supercritical hydrocarbon fuels interest," 31st AIAA Aerospace Sciences Meeting, AIAA 93-0807, January 1993. 

  16. Huang, H., Sobel, D.R., and Spadaccini, L.J., "Endothemic heat-sink of hydrocarbon fuels for scramjet cooling," 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, AIAA 2002-3871, July, 2002. 

  17. Cooper, M. and Shepherd, J.E., "Thermal and Catalytic Cracking of Fuel for Pulse Detonation Engine Applications," GALCIT Report FM 2002.002, 2002. 

  18. Rao, P.N. and Kunzru, D., "Thermal cracking of JP-10: Kinetics and product distribution," Journal of Analytical and Applied Pyrolysis, Vol. 76, No. 1-2, pp. 154-160, 2006. 

  19. Kim, J., Hyeon, D.H., Park, S.H., Chun, B.H., Jeong, B.H., Han, J.S. and Kim, S.H., "Catalytic endothermic reactions of exotetrahydrodicyclopentadiene with zeolites and improvement of heat of reactions," Catalysis Today, Vol. 232, pp. 63-68, 2014. 

  20. Korabelnikov, A.V. and Kuranov, A.L., "Thermochemical conversion of hydrocarbon fuel under the concept 'AJAX'," 9th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, AIAA 99-4921, 1999. 

  21. Korabelnikov, A.V. and Kuranov, A.L., "Hypersonic flight vehicle heat protection using chemical heat regeneration," 40th AIAA Aerospace Sciences Meeting & Exhibit, AIAA 2002-0913, 2002. 

  22. Huang, H., Spadaccini, L.J., and Sobel, D.R., "Fuel-cooled thermal management for advanced aeroengines," ASME Journal of Engineering for Gas Turbines and Power, Vol. 126, No. 2, pp. 284-293, 2004. 

  23. Kim, S., Sasmaz, E., Pogaku, R., and Lauterbach, J., "Effects of reaction conditions and organic sulfur compounds on coke formation and HZSM-5 catalyst performance during jet propellant fuel (JP-8) cracking," Fuel, Vol. 259, 116240, 2020. 

  24. Kim, S., Sasmaz, E., and Lauterbach, J., "Effect of Pt and Gd on coke formation and regeneration during JP-8 cracking over ZSM-5 catalysts," Applied Catalysis B: Environmental, Vol. 168-169, pp. 212-219, 2015. 

  25. Liu, G., Jia, X., Tian, Y., Gong, S., Wang, L., and Zhang, X., "Preparation and remarkable catalytic cracking performances of Pt@FGS/JP-10 nanofluids," Fuel, Vol. 252, pp. 228-237, 2019. 

  26. Zhang, H., Xiao, Z., Yang, M., Tian, Y., Li, G., Zhang, X., and Liu, G., "Catalytic steam reforming of JP-10 over Ni/SBA-15," International Journal of Hydrogen Energy, Vol. 45, pp. 4284-4296, 2020. 

  27. Wang, Y., Hong, Z., and Mei, D., "A thermally autonomous methanol steam reforming microreactor with porous copper foam as catalyst support for hydrogen production," International Journal of Hydrogen Energy, Vol. 46, pp. 6734-6744, 2021. 

  28. Schobert, H.H., The Chemistry of Hydrocarbon Fuels, Butterworths, London, 1990. 

  29. Castaldi, M.J., Leylegian, J.C., Chinitz, W., and Modroukas, D.P., "Development of an effective endothermic fuel platform for regeneratively-cooled hypersonic vehicles," 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, AIAA 2006-4403, July, 2006. 

  30. Sun, W., Liu, G., Wang, L., and Zhang, X., "Quasi-homogeneous catalytic cracking of JP-10 over high hydrocarbon dispersible nanozeolites," Fuel, Vol. 144, pp. 96-102, 2015. 

  31. Hou, L., Jia, Z., Gong, J., Zhou, Y., and Piao, Y., "Heat sink and conversion of catalytic steam reforming for hydrocarbon fuel," Journal of Propulsion and Power, Vol. 28, No. 3, pp. 453-457, 2012. 

  32. Wang, Y.H., Wu, D.Y., and Chi, J., "The status and current development of hydrogen energy and its application technology," Chemical Engineering Progress, Vol. 20, pp. 6-8, 2001. 

  33. Gurijanov, E.P. and Harsha, P.T., "AJAX: new directions in hypersonic technology," 6th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, AIAA 96-4609, 1996. 

  34. Liu, S., Feng, Y., Cao, Y., Gong, K., Zhou, W., and Bao, W., "Numerical simulation of supercritical catalytic steam reforming of aviation kerosene coupling with coking and heat transfer in mini-channel," International Journal of Thermal Sciences, Vol. 137, pp. 199-214, 2019. 

  35. Hou, L., Dong, N., Ren, Z.-Y., Zhang, B., and Hu, S.-L., "Cooling and coke deposition of hydrocarbon fuel with catalytic steam reforming," Fuel Processing Technology, Vol. 128, pp. 128-133, 2014. 

  36. Feng, Y., Liu, Y., Cao, Y., Gong, K., Liu, S., and Qin, J., "Thermal management evaluation for advanced aero-engines using catalytic steam reforming of hydrocarbon fuels," Energy, Vol. 193, 116738, 2020. 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로