최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Microbiology and biotechnology letters = 한국미생물·생명공학회지, v.49 no.1, 2021년, pp.111 - 119
이현주 (부산대학교 미생물학과) , 조은혜 (부산대학교 미생물학과) , 김지혜 (부산대학교 미생물학과) , 문금옥 (부산대학교 미생물학과) , 김민지 (경북대학교 응용생명과학부) , 신재호 (경북대학교 응용생명과학부) , 차재호 (부산대학교 미생물학과)
A bacterial strain isolated from a Malva verticillata leaf was identified as Bacillus velezensis MV2 based on the 16S rRNA sequencing results. Complete genome sequencing revealed that B. velezensis MV2 possessed a single 4,191,702-bp contig with 45.57% GC content. Generally, Bacillus spp. are known ...
Joseph WK, Leong J, Teintze M, Schroth MN. 1980. Enhanced plant growth by siderophores produced by plant growth promoting rhizobacteria. Nature 286: 885-886.
Glick B. 1995. The enhancement of plant growth by free-living bacteria. Can. J. Microbiol. 41: 109-117.
Rodelas BJ, Gonzalez-Lopez, Martinez-Toledo MV, Pozo C, Salmeron V. 1999. Influence of Rhizobium/Azotobacter and Rhizobium/Azospirillum combined inoculation on mineral composition of faba bean (Vicia faba L.). Biol. Fertil Soils. 29: 165-169.
Bashan Y, Levanony H. 1990. Current status of Azospirillum inoculation technology: Azospirillum as a challenge for agriculture. Can. J. Microbiol. 36: 591-608.
Chakraborty U, Purkayastha RP. 1983. Role of rhizobitoxine in protecting soybean roots from Macrophomina phaseolina infection. Can. J. Microbiol. 30: 285-289.
Yuan WM, Crawford DL. 1995. Characterization of Streptomyces lydicus WYEC108 as a potential biocontrol agent against fungal root and seed rots. Appl. Environ. Microbiol. 61: 3119-3128.
Orhan E, Esitken A, Ercisli S, Turan M, Sahin F. 2006. Effects of plant growth promoting rhizobacteria (PGPR) on yield, growth and nutrient contents in organically growing raspberry. Sci. Hortic. 111: 38-43.
Maksimov IV, Abizgil'dina RR, Pusenkova LI. 2011. Plant growth promoting rhizobacteria as alternative to chemical crop protectors from pathogens (review). Appl. Biochem. Microbiol. 47: 333-345.
Stein T. 2005. Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol. Microbiol. 56: 845-857.
Dunlap C, Kim SJ, Kwon SW, Rooney AP. 2016. Bacillus velezensis is not a later heterotypic synonym of Bacillus amyloliquefaciens; Bacillus methylotrophicus, Bacillus amyloliquefaciens subsp. plantarum and 'Bacillus oryzicola' are later heterotypic synonyms of Bacillus velezensis based on phylogenomics. Int. J. Syst. Evol. Microbiol. 66: 1212-1217.
Rabbee MF, Ali MS, Choi J, Hwang BS, Jeong SC, Baek KH. 2019. Bacillus velezensis: A valuable member of bioactive molecules within plant microbiomes. Molecules 24: 1-13.
Abriouel H, Franz CM, Omar NB, Galvez A. 2011. Diversity and applications of Bacillus bacteriocins. FEMS Microbiol. Rev. 35: 201-232.
Cleveland J, Montville TJ, Nes IF, Chikindas ML. 2001. Bacteriocins: safe, natural antimicrobials for food preservation. Int. J. Food Microbiol. 71: 1-20.
Caulier S, Nannan C, Gillis A, Licciardi F, Bragard C, Mahillon J. 2019. Overview of the antimicrobial compounds produced by members of the Bacillus subtilis Group. Front. Microbiol. 10: 302.
Rangarajan V, Kim GC. 2016. Towards bacterial lipopeptide products for specific applications - a review of appropriate downstream processing schemes. Process Biochem. 51: 2176-2185.
Ma Z, Zhang S, Zhang S, Wu G, Shao Y, Mi Q, et al. 2020. Isolation and characterization of a new cyclic lipopeptide surfactin from a marine-derived Bacillus velezensis SH-B74. J. Antibiot. 73: 863-867.
Smith JL, Collins HP, Crump AR, Bailey VL. 2015. Management of soil biota and their processes, pp. 539-572. In Paul EA (ed.), Soil Microbiology, Ecology and Biochemistry, 4th Ed. Waltham, MA : Academic Press, Boston, USA.
Blin K, Shaw S, Steinke K, Villebro R, Ziemert N, Lee SY, et al. 2019. AntiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res. 47: W81-W87.
Russell AD. 1998. Mechanisms of Bacterial Resistance to Antibiotics and Biocides, pp. 133-197. In Ellis GP, Luscombe DK, Oxford AW (ed.), Prog. Med. Chem., Ed. Elsevier, Amsterdam, Netherlands, Oxford, England.
Russell AD. 1998. Mechanisms of bacterial resistance to antibiotics and biocides. Prog. Med. Chem. 35: 133-197.
Muller S, Strack SN, Hoefler BC, Straight PD, Kearns DB, Kirby JR. 2014. Bacillaene and sporulation protect Bacillus subtilis from predation by Myxococcus xanthus. Appl. Environ. Microbiol. 80: 5603-5610.
Gong A, Li HP, Yuan QS, Song XS, Yao W, He WJ, et al. 2015. Antagonistic mechanism of iturin A and plipastatin A from Bacillus amyloliquefaciens S76-3 from wheat spikes against Fusarium graminearum. PLoS One 10: e0116871.
Koumoutsi A, Chen XH, Henne A, Liesegang H, Hitzeroth G, Franke P, et al. 2004. Structural and functional characterization of gene clusters directing nonribosomal synthesis of bioactive cyclic lipopeptides in Bacillus amyloliquefaciens strain FZB42. J. Bacteriol. 186: 1084-1096.
Chen M, Wang J, Liu B, Zhu Y, Xiao R, Yang W, et al. 2020. Bio-control of tomato bacterial wilt by the new strain Bacillus velezensis FJAT-46737 and its lipopeptides. BMC Microbiol. 20: 160-172.
Stincone P, Veras FF, Pereira JQ, Mayer FQ, Varela APM, Brandelli A. 2020. Diversity of cyclic antimicrobial lipopeptides from Bacillus P34 revealed by functional annotation and comparative genome analysis. Microbiol. Res. 238: 126515.
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문
※ AI-Helper는 부적절한 답변을 할 수 있습니다.