$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Apigenin Ameliorates Oxidative Stress-induced Neuronal Apoptosis in SH-SY5Y Cells 원문보기

Microbiology and biotechnology letters = 한국미생물·생명공학회지, v.49 no.2, 2021년, pp.138 - 147  

Kim, Yeo Jin (Department of Food Science and Nutrition and Kimchi Research Institute, Pusan National University) ,  Cho, Eun Ju (Department of Food Science and Nutrition and Kimchi Research Institute, Pusan National University) ,  Lee, Ah Young (Department of Food Science, Gyeongsang National University) ,  Seo, Weon Taek (Department of Food Science, Gyeongsang National University)

Abstract AI-Helper 아이콘AI-Helper

The overproduction of reactive nitrogen species (RNS) and reactive oxygen species (ROS) causes oxidative damage to neuronal cells, leading to the progression of neurodegenerative diseases. In this study, we determined the nitric oxide radical (NO), hydroxyl radical (·OH), and superoxide anion...

주제어

표/그림 (5)

참고문헌 (62)

  1. Davalli P, Mitic T, Caporali A, Lauriola A, D'Arca D. 2016. ROS, cell senescence, and novel molecular mechanisms in aging and agerelated diseases. Oxid. Med. Cell. Longev. 2016: 3565127. 

  2. Del Rio LA. 2015. ROS and RNS in plant physiology: an overview. J. Exp. Bot. 66: 2827-2837. 

  3. Phaniendra A, Jestadi DB, Periyasamy L. 2015. Free radicals: properties, sources, targets, and their implication in various diseases. Indian J. Clin. Biochem. 30: 11-26. 

  4. Islam MT. 2017. Oxidative stress and mitochondrial dysfunctionlinked neurodegenerative disorders. Neurol. Res. 39: 73-82. 

  5. Bhat AH, Dar KB, Anees S, Zargar MA, Masood A, Sofi MA, et al. 2015. Oxidative stress, mitochondrial dysfunction and neurodegenerative diseases; a mechanistic insight. Biomed. Pharmacother. 74: 101-110. 

  6. Niu X, Zheng S, Liu H, Li S. 2018. Protective effects of taurine against inflammation, apoptosis, and oxidative stress in brain injury. Mol. Med. Rep. 18: 4516-4522. 

  7. Cobley JN, Fiorello ML, Bailey DM. 2018. 13 Reasons why the brain is susceptible to oxidative stress. Redox Biol. 15: 490-503. 

  8. Forster JI, Koglsberger S, Trefois C, Boyd O, Baumuratov AS, Buck L, et al. 2016. Characterization of differentiated SH-SY5Y as neuronal screening model reveals increased oxidative vulnerability. J. Biomol. Screen 21: 496-509. 

  9. Park HR, Lee H, Park H, Jeon JW, Cho WK, Ma JY. 2015. Neuroprotective effects of Liripope platyphylla extract against hydrogen peroxide-induced cytotoxicity in human neuroblastoma SHSY5Y cells. BMC Complement. Med. Ther. 15: 171. 

  10. Zhang B, Cui Y, Wang L, Zhao L, Hou C, Zeng Q, et al. 2018. Autophagy regulates high concentrations of iodide-induced apoptosis in SH-SY5Y cells. Toxicol. Lett. 284: 129-135. 

  11. Nirmaladevi D, Venkataramana M, Chandranayaka S, Ramesha A, Jameel NM, Srinivas C. 2014. Neuroprotective effects of bikaverin on H 2 O 2 -induced oxidative stress mediated neuronal damage in SH-SY5Y cell line. Cell. Mol. Neurobiol. 34: 973-985. 

  12. Yang R, Wei L, Fu QQ, Wang H, You H, Yu HR. 2016. SOD3 ameliorates H 2 O 2 induced oxidative damage in SH-SY5Y cells by inhibiting the mitochondrial pathway. Neurochem. Res. 41: 1818-1830. 

  13. Shi MD, Shiao CK, Lee YC, Shih YW. 2015. Apigenin, a dietary flavonoid, inhibits proliferation of human bladder cancer T-24 cells via blocking cell cycle progression and inducing apoptosis. Cancer Cell Int. 15: 33. 

  14. Chen XJ, Wu MY, Li DH, You J. 2016. Apigenin inhibits glioma cell growth through promoting microRNA-16 and suppression of Bcl-2 and nuclear factor-kappaB/MMP9. Mol. Med. Rep. 14: 2352-2358. 

  15. Kowalska I, Adach W, Stochmal A, Olas B. 2020. A comparison of the effects of apigenin and seven of its derivatives on selected biomarkers of oxidative stress and coagulation in vitro. Food. Chem. Toxicol. 136: 111016. 

  16. Amini R, Yazdanparast R, Ghaffari SH. 2015. Apigenin modulates the expression levels of pro-inflammatory mediators to reduce the human insulin amyloid-induced oxidant damages in SK-NMC cells. Hum. Exp. Toxicol. 34: 642-653. 

  17. Sun X, Min D, Wang Y, Hao L. 2015. Potassium aspartate inhibits SH-SY5Y cell damage and apoptosis induced by ouabain and H 2 O 2 . Mol. Med. Rep. 12: 2842-2848. 

  18. Sharma A, Ghani A, Sak K, Tuli HS, Sharma AK, Setzer WN, et al. 2019. Probing into therapeutic anti-cancer potential of apigenin: recent trends and future directions. Recent. Pat. Inflamm. Allergy Drug. Discov. 13: 124-133. 

  19. Zhao L, Wang JL, Liu R, Li XX, Li JF, Zhang L. 2013. Neuroprotective, anti-amyloidogenic and neurotrophic effects of apigenin in an Alzheimer's disease mouse model. Molecules 18: 9949-9965. 

  20. Li F, Lang F, Zhang H, Xu L, Wang Y, Zhai C, et al. 2017. Apigenin alleviates endotoxin-induced myocardial toxicity by modulating inflammation, oxidative stress, and autophagy. Oxid. Med. Cell. Longev. 2017: 2302896. 

  21. Zhao L, Wang JL, Wang YR, Fa XZ. 2013. Apigenin attenuates copper-mediated beta-amyloid neurotoxicity through antioxidation, mitochondrion protection and MAPK signal inactivation in an AD cell model. Brain Res. 1492: 33-45. 

  22. Chung SK, Osawa T, Kawakishi S. 1997. Hydroxyl radical-scavenging effects of spices and scavengers from brown mustard (Brassica nigra). J. Biosci. Biotechnol. Biochem. 61: 118-123. 

  23. Nishikimi M, Appaji N, Yagi K. 1972. The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen. Biochem. Biophys. Res. Commun. 46: 849-854. 

  24. Marcocci L, Packer L, Droy-Lefaix MT, Sekaki A, Gardes-Albert M. 1994. Antioxidant action of Ginkgo biloba extract EGb 761. Methods Enzymol. 234: 462-475. 

  25. Cathcart R, Schwiers E, Ames BN. 1984. Detection of picomole levels of lipid hydroperoxides using a dichlorofluorescein fluorescent assay. Methods Enzymol. 105: 352-358. 

  26. Niedzielska E, Smaga I, Gawlik M, Moniczewski A, Stankowicz P, Pera J, et al. 2016. Oxidative stress in neurodegenerative diseases. Mol. Neurobiol. 53: 4094-4125. 

  27. Cai L, Wang LF, Pan JP, Mi XN, Zhang Z, Geng HJ, et al. 2016. Neuroprotective effects of methyl 3,4-dihydroxybenzoate against TBHP-induced oxidative damage in SH-SY5Y cells. Molecules 21:1071. 

  28. Valko M, Jomova K, Rhodes CJ, Kuca K, Musilek K. 2016. Redoxand non-redox-metal-induced formation of free radicals and their role in human disease. Arch. Toxicol. 90: 1-37. 

  29. Enogieru AB, Haylett W, Hiss DC, Bardien S, Ekpo OE. 2018. Rutin as a potent antioxidant: implications for neurodegenerative disorders. Oxid. Med. Cell. Longev. 2018: 6241017. 

  30. Achete de Souza G, de Marqui SV, Matias JN, Guiguer EL, Barbalho SM. 2020. Effects of Ginkgo biloba on diseases related to oxidative stress. Planta. Med. 86: 376-386. 

  31. Pezeshki-Nia S, Asle-Rousta M, Mahmazi S. 2020. Spinacia oleracea L. extract attenuates hippocampal expression of TNF-alpha and IL-1beta in rats exposed to chronic restraint stress. Med. J. Islam. Repub. Iran 34: 10. 

  32. Salehi B, Venditti A, Sharifi-Rad M, Kregiel D, Sharifi-Rad J, Durazzo A, et al. 2019. The therapeutic potential of apigenin. Int. J. Mol. Sci. 20: 1305. 

  33. Balez R, Steiner N, Engel M, Munoz SS, Lum JS, Wu Y, et al. 2016. Neuroprotective effects of apigenin against inflammation, neuronal excitability and apoptosis in an induced pluripotent stem cell model of Alzheimer's disease. Sci. Rep. 12: 31450. 

  34. Kang SS, Lee JY, Choi YK, Kim GS, Han BH. 2004. Neuroprotective effects of flavones on hydrogen peroxide-induced apoptosis in SH-SY5Y neuroblostoma cells. Bioorg. Med. Chem. Lett. 3: 2261- 2264. 

  35. Castelli V, Benedetti E, Antonosante A, Catanesi M, Pitari G, Ippoliti R, et al. 2019. Neuronal cells rearrangement during aging and neurodegenerative disease: metabolism, oxidative stress and organelles dynamic. Front. Mol. Neurosci. 28: 132. 

  36. Wang X, Michaelis EK. 2010. Selective neuronal vulnerability to oxidative stress in the brain. Front. Aging. Neurosci. 2: 12. 

  37. Zhang L, Yu H, Sun Y, Lin X, Chen B, Tan C, et al. 2007. Protective effects of salidroside on hydrogen peroxide-induced apoptosis in SH-SY5Y human neuroblastoma cells. Eur. J. Pharmacol. 564: 18-25. 

  38. Mattson MP, Pedersen WA, Duan W, Culmsee C, Camandola S. 1999. Cellular and molecular mechanisms underlying perturbed energy metabolism and neuronal degeneration in Alzheimer's and Parkinson's diseases. Ann. NY Acad. Sci. 893: 154-175. 

  39. Lee DZ, Chung JM, Chung K, Kang MG. 2012. Reactive oxygen species (ROS) modulate AMPA receptor phosphorylation and cell-surface localization in concert with pain-related behavior. Pain. 153: 1905-1915. 

  40. AbdulSalam SF, Gurjar PN, Zhu H, Liu J, Johnson ES, Kadekaro AL, et al. 2017. Self-cyclizing antioxidants to prevent DNA damage caused by hydroxyl radical. Chembiochem. 18: 2007-2011. 

  41. Chiste RC, Freitas M, Mercadante AZ, Fernandes E. 2015. Superoxide anion radical: generation and detection in cellular and non-cellular systems. Curr. Med. Chem. 22: 4234-4256. 

  42. Sies H, Jones DP. 2020. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat. Rev. Mol. Cell. Biol. 21: 363-383. 

  43. Bagheri M, Nair RR, Singh KK, Saini DK. 2017. ATM-ROS-iNOS axis regulates nitric oxide mediated cellular senescence. Biochim. Biophys. Acta. Mol. Cell. Res. 1864: 177-190. 

  44. Singh D, Khan MA, Siddique HR. 2019. Apigenin, a plant flavone playing noble roles in cancer prevention via modulation of key cell signaling networks. Recent. Pat. Anticancer. Drug Discov. 14: 298-311. 

  45. Wang M, Firrman J, Liu L, Yam K. 2019. A review on flavonoid apigenin: dietary intake, ADME, antimicrobial effects, and interactions with human gut microbiota. Biomed. Res. Int. 2019: 7010467. 

  46. Zhang L, Yu H, Sun Y, Lin X, Chen B, Tan C, et al. 2007. Protective effect of salidroside on hydrogen peroxide-induced apoptosis in SH-SY5Y human neuroblastoma cells. Eur. J. Pharmacol. 564: 18-25. 

  47. Tian X, Gao L, An L, Jiang X, Bai J, Huang J, et al. 2016. Pretreatment of MQA, a caffeoylquinic acid derivative compound, protects against H 2 O 2 -induced oxidative stress in SH-SY5Y cells. Neurol. Res. 38: 1079-1087. 

  48. Kale J, Osterlund EJ, Andrews DW. 2018. BCL-2 family proteins: changing partners in the dance towards death. Cell. Death. Differ. 25: 65-80. 

  49. Opferman JT, Kothari A. 2018. Anti-apoptotic BCL-2 family members in development. Cell. Death. Differ. 25: 37-45. 

  50. Siddiqui WA, Ahad A, Ahsan H. 2015. The mystery of BCL2 family: Bcl-2 proteins and apoptosis: an update. Arch. Toxicol. 89: 289-317. 

  51. Garner TP, Reyna DE, Priyadarshi A, Chen HC, Li S, Wu Y, et al. 2016. An autoinhibited dimeric form of BAX regulates the BAX activation pathway. Mol. Cell. 63: 485-497. 

  52. Zare MFR, Rakhshan K, Aboutaleb N, Nikbakht F, Naderi N, Bakhshesh M, et al. 2019. Apigenin attenuates doxorubicin induced cardiotoxicity via reducing oxidative stress and apoptosis in male rats. Life. Sci. 232: 116623. 

  53. Zhong Y, Jin C, Gan J, Wang X, Shi Z, Xia X, et al. 2017. Apigenin attenuates patulin-induced apoptosis in HEK293 cells by modulating ROS-mediated mitochondrial dysfunction and caspase signal pathway Toxicon. 137: 106-113. 

  54. Qi H, Shuai J. 2016. Alzheimer's disease via enhanced calcium signaling caused by the decrease of endoplasmic reticulummitochondrial distance. Med. Hypotheses 89: 28-31. 

  55. Xu P, Cai X, Zhang W, Li Y, Qiu P, Lu D, et al. 2016. Flavonoids of Rosa roxburghii Tratt exhibit radioprotection and anti-apoptosis properties via the Bcl-2(Ca 2+ )/Caspase-3/PARP-1 pathway. Apoptosis 21: 1125-1143. 

  56. Kim A, Nam YJ, Lee MS, Shin YK, Sohn DS, Lee CS. 2016. Apigenin reduces proteasome inhibition-induced neuronal apoptosis by suppressing the cell death process. Neurochem. Res. 41: 2969- 2980. 

  57. Han Y, Zhang T, Su J, Zhao Y, Chenchen Wang, Li X. 2017. Apigenin attenuates oxidative stress and neuronal apoptosis in early brain injury following subarachnoid hemorrhage. J. Clin. Neurosci. 40: 157-162. 

  58. Huang J, May JM. 2006. Ascorbic acid protects SH-SY5Y neuroblastoma cells from apoptosis and death induced by betaamyloid. Brain Res. 1097: 52-58. 

  59. Guillemain I, Fontes G, Privat A, Chaudieu I. 2003. Early programmed cell death in human NT2 cell cultures during differentiation induced by all-trans-retinoic acid. J. Neurosci. Res. 71: 38-45. 

  60. Ross ME. 1996. Cell division and the nervous system: regulating the cycle from neural differentiation to death. Trends Neurosci. 19: 62-68. 

  61. Li P, Zhao QL, Wu LH, Jawaid P, Jiao YF, Kadowaki M, et al. 2014. Isofraxidin, a potent reactive oxygen species (ROS) scavenger, protects human leukemia cells from radiation-induced apoptosis via ROS/mitochondria pathway in p53-independent manner. Apoptosis 19: 1043-1053. 

  62. Guo H, Kong S, Chen W, Dai Z, Lin T, Su J, et al. 2014. Apigenin mediated protection of OGD-evoked neuron-like injury in differentiated PC12 cells. Neurochem. Res. 39: 2197-2210. 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로