최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기韓國軍事科學技術學會誌 = Journal of the KIMST, v.24 no.3, 2021년, pp.281 - 292
정미애 (율곡이이함) , 마정목 (국방대학교 국방과학학과)
With the development of deep learning technology, researchers and technicians keep attempting to apply deep learning in various industrial and academic fields, including the defense. Most of these attempts assume that the data are balanced. In reality, since lots of the data are imbalanced, the clas...
S. W. Park, H. S. Park, Y. B. Kim, D. G. Kim, "Suspected Object Detection and Tracking methods for National Defence Surveillance," Communications of the Korean Institute of Information Scientists and Engineers, Vol. 36, No. 8, pp. 33-40, 2018.
D. W. Choi, J. M. Ma, "Improvement of Ship Classification Based on Artificial Neural Network Considering Night and Low Visibility Marine Environment," Korean Journal of Computational Design and Engineer-ing, Vol. 24, No. 3, pp. 320-328, 2019.
J. W. Lee, D. W. Nam, W. Y. Yoo, "A Study on Composition of Warship Type/Class Identification System," The Korea Institute of Information and Communication Engineering, Vol. 23, No. 2, pp. 607-610, 2019.
M. A. Jeong, J. M. Ma, "Improvement of Submarine Detection Based on Mast Images Using An Ensemble Model of Convolutional Neural Networks," Journal of the Korea Institute of Military Science and Technology, Vol. 23, No. 2, pp. 115-124, 2020.
Log0, "Class Imbalance Problem," August 30, 2013, http://www.chioka.in/class-imbalance-problem/ (accessed July 10, 2020.).
H. He, E. A. Garcia, "Learning from Imbalanced Data," IEEE Transactions On Knowledge And Data Engineering, Vol. 21, No. 9, pp. 1263-1284, 2009.
S. B. Kim, "Sampling Technique for Analysis of Imbalanced Data," February 20, 2020, https://www.youtube.com/watch?vVhwz228Vrlk (accessed June 28, 2020.).
H. S. Jeong, C. W. Kang, K. K. Kim, "The Effect of Oversampling Method for Imbalanced Data," Journal of The Korean Data Analysis Society, Vol. 10, No. 4, pp. 2089-2098, 2008.
K. N. Lee, J. T. Lim, K. S. Bok, J. S. Yoo, "Handling Method of Imbalance Data for Machine Learning : Focused on Sampling," The Korea Contents Society, Vol. 19, No. 11. pp. 567-577, 2019.
H. C. Kim, "Adversarial Cost-Sensitive Learning for Class Imbalance Problem," M. E. Thesis, University of Gangwon, 2020.
T. Fawcett, "Learning from Imbalanced Classes," August 25, 2016, https://www.svds.com/learning-imbalanced-classes/ (accessed July 10, 2020.).
J. O. Kim, E. S. Hwang, J. M. Yoo, "Analysis of NCO Promotion Factors Using Imbalanced Data Processing," 12th International Army Modeling & Simulation Education Conference, p. 90, 2019.
Solaris, "Deep Learning to Learn by Tensorflow," Youngjin.com, Seoul, 2018.
K. Simonyan, A. Zisserman, "Very Deep Convolutional Networks for Large-Scale Image Recognition," International Conference on Learning Representations, pp. 1-14, 2015.
G. Saito, "Deep Learning from Scratch," Hanbit Media, Seoul, 2017.
J. Brownlee, "How to Develop a Cost-Sensitive Neural Network for Imbalanced Classification," February 2, 2020, https://machinelearningmastery.com/cost-sensitive-neural-network-for-imbalanced-classification/ (accessed May 2, 2021.).
S. J. Yoo et al., "Analysis of Big-Data Using Python," The Twenty-First Century, Paju, 2018.
M. K. Seo, "Practical Data Processing and Analysis Using R," Gilbut Publishing, Seoul, 2014.
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
오픈액세스 학술지에 출판된 논문
※ AI-Helper는 부적절한 답변을 할 수 있습니다.