$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] Safety assessment of nuclear fuel reprocessing plant under the free drop impact of spent fuel cask and fuel assembly part I: Large-scale model test and finite element model validation 원문보기

Nuclear engineering and technology : an international journal of the Korean Nuclear Society, v.53 no.8, 2021년, pp.2682 - 2695  

Li, Z.C. (State Key Laboratory of Nuclear Power Safety Monitoring Technology and Equipment, China Nuclear Power Engineering Co., Ltd) ,  Yang, Y.H. (College of Civil Engineering, Tongji University) ,  Dong, Z.F. (State Key Laboratory of Nuclear Power Safety Monitoring Technology and Equipment, China Nuclear Power Engineering Co., Ltd) ,  Huang, T. (State Key Laboratory of Nuclear Power Safety Monitoring Technology and Equipment, China Nuclear Power Engineering Co., Ltd) ,  Wu, H. (College of Civil Engineering, Tongji University)

Abstract AI-Helper 아이콘AI-Helper

This paper aims to evaluate the structural dynamic responses and damage/failure of the nuclear fuel reprocessing plant under the free drop impact of spent fuel cask (SFC) and fuel assembly (FA) during the on-site transportation. At the present Part I of this paper, the large-scale SFC model free dro...

주제어

참고문헌 (39)

  1. H. Othman, T. Sabrah, H. Marzouk, Conceptual design of ultra-high performance fiber reinforced concrete nuclear waste container, Nucl. Eng. Technol. 51 (2019) 588-599. 

  2. R. Lo Frano, D. Aquaro, D. Giorla, D. Del Serra, Thermal tests of a scaled down mock-up of CP5.2 packaging system: post-test analysis, Prog. Nucl. Energy 107 (2018) 1-9. 

  3. R. Lo Frano, D. Del Serra, D. Aquaro, Thermal tests of a CP5.2 packaging system: prototype and experimental test description, Prog. Nucl. Energy 105 (2018) 247-253. 

  4. IAEA Safety Standards Series, Advisory Material for the IAEA Regulations for the Safe Transport of Radioactive Material, Safety Guide, 2008. No. TS-G-1.1 (Rev. 1). 

  5. U.S. Nuclear Regulatory Commission, Office of Nuclear Material Safety and Safeguards, Standard Review Plan for Spent Fuel Dry Storage Facilities, NUREG-1567, 2000. 

  6. American Society of Mechanical Engineers, ASME BPVC section III-rules for construction of nuclear facility components-division 3, in: Containments for Transportation and Storage of Spent Nuclear Fuel and High Level Radioactive Material and Waste, 2015. 

  7. Nuclear and Industrial Safety Agency of the Japanese Government, Technical Requirements on Interim Spent Fuel Storage Facility Using Dry Metal Cask, 2006. NISA-314c-06-02. 

  8. Korea Mest, Regulations for Packaging and Transport of Radioactive Material, Korea Mest Act, 2008, 2008-69. 

  9. National Nuclear Safety Administration of China, Safety Regulations for Nuclear Power Plant Design, vols. 102-2016, HAF, 2016. 

  10. T.Y. Wu, H.Y. Lee, L.C. Kang, Dynamic response analysis of a spent-fuel dry storage cask under vertical drop accident, Ann. Nucl. Energy 42 (2012) 18-29. 

  11. T. Saegusa, G. Yagawa, M. Aritomi, Topics of research and development on concrete cask storage of spent nuclear fuel, Nucl. Eng. Des. 238 (2008) 1168-1174. 

  12. G. Pugliese, R. Lo Frano, G. Forasassi, Spent fuel transport cask thermal evaluation under normal and accident conditions, Nucl. Eng. Des. 240 (2010) 1699-1706. 

  13. A.T. Silva, M. Mattar Neto, R.P. Mourao, L.L. Silva, C.C. Lopes, M.C.C. Silva, Options for the interim storage of IEA-R1 research reactor spent fuels, Prog. Nucl. Energy 50 (2008) 836-844. 

  14. Y. Saito, J. Kishimoto, T. Matsuoka, H. Tamaki, A. Kitada, Containment integrity evaluation of MSF-type cask for interim storage and transport of PWR spent fuel, Int. J. Pres. Ves. Pip. 117-118 (2014) 33-41. 

  15. K. Shirai, T. Saegusa, Demonstrative drop tests of transport and storage fullscale canisters with high corrosion-resistant material, Nucl. Eng. Des. 238 (2008) 1241-1249. 

  16. R. Lo Frano, G. Pugliese, M. Nasta, Structural performance of an IP2 package in free drop test conditions: numerical and experimental evaluations, Nucl. Eng. Des. 280 (2014) 634-643. 

  17. R. Lo Frano, A. Sanfiorenzo, Demonstration of structural performance of IP-2 package by simulation and full-scale horizontal free drop test, Prog. Nucl. Energy 86 (2016) 40-49. 

  18. MARC, Theory and User Information, 2010. 

  19. ANSYS Structural Analysis Guide, Release 14, ANSYS INC., Southpointe, 275 Technology Drive, Canonsburg, PA 15317, USA, 2011. 

  20. S.P. Kim, J. Kim, D. Sohn, H. Kwon, M. Shin, Stress-based vs. strain-based safety evaluations of spent nuclear fuel transport casks in energy-limited events, Nucl. Eng. Des. 355 (2019) 110324. 

  21. Dassault Systemes, ABAQUS 6.14 Documentation, Simulia Co., Providence, RI, USA, 2015. 

  22. T.Y. Wu, H.Y. Lee, L.C. Kang, Dynamic response analysis of a spent-fuel dry storage cask under vertical drop accident, Ann. Nucl. Energy 42 (2012) 18-29. 

  23. Livermore software technology corporation, LS-DYNA Keyword User's Manual Version 971, 2007. 

  24. D. Aquaro, N. Zaccari, M. Di Prinzio, G. Forasassi, Numerical and experimental analysis of the impact of a nuclear spent fuel cask, Nucl. Eng. Des. 242 (2010) 706-712. 

  25. J. Wang, H. Ren, X. Wu, C. Cai, Blast response of polymer-retrofitted masonry unit walls, Compos. B Eng. 128 (2017) 174-181. 

  26. A. Bayat, G.H. Liaghat, M. Ghalami-Choobar, G.D. Ashkezari, H. Sabouri, Analytical modeling of the high-velocity impact of autoclaved aerated concrete (AAC) blocks and some experimental results, Int. J. Mech. Sci. 159 (2019) 315-324. 

  27. J.C. Serrano-Perez, U.K. Vaidya, N. Uddin, Low velocity impact response of autoclaved aerated concrete/CFRP sandwich plates, Compos. Struct. 80 (2007) 621-630. 

  28. V. Dey, G. Zani, M. Colombo, M. Di Prisco, B. Mobasher, Flexural impact response of textile-reinforced aerated concrete sandwich panels, Mater. Des. 86 (2015) 187-197. 

  29. B. Wang, Y. Chen, H. Fan, F. Jin, Investigation of low-velocity impact behaviors of foamed concrete material, Compos. B Eng. 162 (2019) 491-499. 

  30. E.P. Kearsley, P.J. Wainwright, Porosity and permeability of foamed concrete, Cement Concr. Res. 31 (2001) 805-812. 

  31. L.E. Schwer, Y.D. Murray, A three invariant smooth cap model with mixed hardening, Int. J. Numer. Anal. Methods GeoMech. 18 (10) (1994) 657-688. 

  32. S. Govindjee, G.J. Kay, J.C. Simo, Anisotropic modelling and numerical simulation of brittle damage in concrete, Int. J. Numer. Methods Eng. 38 (21) (1995) 3611-3633. 

  33. G.R. Johnson, W.H. Cook, A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures, in: Proceedings of the 7th International Symposium on Ballistics, Hague, vol. 21, 1983, pp. 541-547. 

  34. R.D. Krieg, S.W. Key, Implementation of a time dependent plasticity theory into structural computer programs, Am. Soc. Mech. Eng. Appl. Mech. Div. AMD 20 (1976) 125-137. 

  35. S.T. Marais, R.B. Tait, T.J. Cloete, G.N. Nurick, Material test at high strain rate using the split Hopkinson pressure bar, Lat. Am. J. Solid. Struct. 1 (2004) 319-339. 

  36. T.M. Pham, H. Hao, Effect of the plastic hinge and boundary conditions on the impact behavior of reinforced concrete beams, Int. J. Impact Eng. 102 (2017) 74-85. 

  37. A. Pavlovic, C. Fragassa, A. Disic, Comparative numerical and experimental study of projectile impact on reinforced concrete, Compos. B Eng. 108 (2017) 122-130. 

  38. X. Chen, F. Lu, D. Zhang, Penetration trajectory of concrete targets by ogived steel projectiles-Experiments and simulations, Int. J. Impact Eng. 120 (2018) 202-213. 

  39. Z. Li, L. Chen, Q. Fang, H. Hao, Y. Zhang, W. Chen, H. Xiang, Q. Bao, Study of autoclaved aerated concrete masonry walls under vented gas explosions, Eng. Struct. 141 (2017) 444-460. 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로