$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Determination of true stress-strain curve of type 304 and 316 stainless steels using a typical tensile test and finite element analysis 원문보기

Nuclear engineering and technology : an international journal of the Korean Nuclear Society, v.53 no.2, 2021년, pp.647 - 656  

Kweon, Hyeong Do (Korea Hydro & Nuclear Power Co, Ltd) ,  Kim, Jin Weon (Department of Nuclear Engineering, Chosun University) ,  Song, Ohseop (Department of Mechanical Engineering, Chungnam National University) ,  Oh, Dongho (Department of Mechanical Engineering, Chungnam National University)

Abstract AI-Helper 아이콘AI-Helper

Knowing a material's true stress-strain curve is essential for performing a nonlinear finite element analysis to solve an elastoplastic problem. This study presents a simple methodology to determine the true stress-strain curve of type 304 and 316 austenitic stainless steels in the full range of str...

주제어

참고문헌 (43)

  1. G. Saji, Safety goals for seismic and tsunami risks: lessons learned from the Fukushima Daiichi disaster, Nucl. Eng. Des. 280 (2014) 243-249. 

  2. I. Nakamura, N. Kasahara, Excitation tests on elbow pipe specimens to investigate failure behavior under excessive seismic loads, in: ASME 2015 Pressure Vessel and Piping Conference, July 19-23, 2015. Boston, USA. 

  3. P. Sollogoub, The OECD-NEA programme on metallic component margins under high seismic loads (MECOS): towards new criteria, in: ASME 2017 Pressure Vessel and Piping Conference, July 16-20, 2017. Waikoloa, USA. 

  4. S.D. Snow, D.K. Morton, Strain-based acceptance criteria for energy-limited events, in: ASME 2009 Pressure Vessel and Piping Conference, July 26-30, 2009. Prague, Czech Republic. 

  5. C. Mondal, B. Podder, K.R. Kumar, D.R. Yadav, Constitutive description of tensile flow behavior of cold flow-formed AFNOR 15CDV6 steel at different deformation levels, J. Mater. Eng. Perform. 23 (2014) 3586-3599. 

  6. G. Sainath, B.K. Choudhary, J. Christopher, E.I. Samuel, M.D. Mathew, Applicability of Voce equation for tensile flow and work hardening behaviour of P92 ferritic steel, Int. J. Pres. Ves. Pip. 132 (2015) 1-9. 

  7. L. Li, S. Liu, B. Ye, S. Hu, Z. Zhou, Quantitative analysis of strength and plasticity of a 304 stainless steel based on the stress-strain curve, Met. Mater. Int. 22 (2016) 391-396. 

  8. J. Choung, C. Shim, H. Song, Estimation of failure strain of EH36 high strength marine structural steel using average stress triaxiality, Mar. Struct. 29 (2012) 1-21. 

  9. R. Schneider, R.J. Grant, N. Sotirov, G. Falkinger, F. Grabner, C. Reichl, M. Scheerer, B. Heine, Z. Zouaoui, Constitutive flow curve approximation of commercial aluminium alloys at low temperatures, Mater. Des. 88 (2015) 659-666. 

  10. J. Agirre, L. Galdos, E.S. Argandona, J. Mendiguren, Hardening prediction of diverse materials using the digital image correlation technique, Mech. Mater. 124 (2018) 71-79. 

  11. Q. Pham, B. Lee, K. Park, Y. Kim, Influence of the post-necking prediction of hardening law on the theoretical forming limit curve of aluminium sheets, Int. J. Mech. Sci. 140 (2018) 521-536. 

  12. K.B. Othmen, N. Haddar, A. Jegat, P. Manach, K. Elleuch, Ductile fracture of AISI 304L stainless steel sheet in stretching, Int. J. Mech. Sci. 172 (2020) 105404. 

  13. J.H. Hollomon, Tensile deformation, Transactions of AIME 162 (1945) 268-290. 

  14. H.W. Swift, Plastic instability under plane stress, J. Mech. Phys. Solid. 1 (1952) 1-18. 

  15. P. Ludwik, Elements der Technologischen Mechanik, Verlag Von Julius Springer, Leipzig, 1909, p. 32. 

  16. E. Voce, The relationship between stress and strain from homogeneous deformation, J. Inst. Met. 74 (1948) 537-562. 

  17. J.E. Hockett, O.D. Sherby, Large strain deformation of polycrystalline metals at low homologous temperatures, J. Mech. Phys. Solid. 23 (1975) 87-98. 

  18. P.E. Armstrong, J.E. Hockett, O.D. Sherby, Large strain multidirectional deformation of 1100 aluminum at 300 K, J. Mech. Phys. Solid. 30 (1982) 27-58. 

  19. S.K. Paul, S. Roy, S. Sivaprasad, H.N. Bar, S. Tarafder, Identification of post-necking tensile stress-strain behavior of steel sheet: an experimental investigation using digital image correlation technique, J. Mater. Eng. Perform. 27 (2018) 5736-5743. 

  20. C. Annan, E. Beaumont, Low cycle fatigue of stainless steel plates under large plastic strain demands, Journal of Building Engineering 29 (2020) 101160. 

  21. E.E. Cabezas, D.J. Celentano, Experimental and numerical analysis of the tensile test using sheet specimens, Finite Elem. Anal. Des. 40 (2004) 555-575. 

  22. M. Kamaya, M. Kawakubo, A procedure for determining the true stress-strain curve over a large range of strains using digital image correlation and finite element analysis, Mech. Mater. 43 (2011) 243-253. 

  23. L. Wang, W. Tong, Identification of post-necking strain hardening behavior of thin sheet metals from image-based surface strain data in uniaxial tension tests, Int. J. Solid Struct. 75 (2015) 12-31. 

  24. M. Kamaya, Y. Kitsunai, M. Koshiishi, True stress-strain curve acquisition for irradiated stainless steel including the range exceeding necking strain, J. Nucl. Mater. 465 (2015) 316-325. 

  25. Y. Ling, Uniaxial true stress-strain after necking, AMP Journal of Technology 5 (1996) 37-48. 

  26. G. Mirone, A new model for the elastoplastic characterization and the stressstrain determination on the necking section of a tensile specimen, Int. J. Solid Struct. 41 (2004) 3545-3564. 

  27. M. Joun, J.G. Eom, M.C. Lee, A new method for acquiring true stress-strain curves over a large range of strains using a tensile test and finite element method, Mech. Mater. 40 (2008) 586-593. 

  28. K. Zhao, L. Wang, Y. Chang, J. Yan, Identification of post-necking stress-strain curve for sheet metals by inverse method, Mech. Mater. 92 (2016) 107-118. 

  29. F. Sebek, P. Kubik, J. Hulka, J. Petruska, Strain Hardening Exponent Role in Phenomenological Ductile Fracture Criteria, vol. 57, 2016, pp. 149-164. 

  30. M. Saboori, H. Champliaud, J. Gholipour, A. Gakwaya, J. Savoie, P. Wanjara, Extension of flow stress-strain curves of aerospace alloys after necking, Int. J. Adv. Manuf. Technol. 83 (2016) 313-323. 

  31. M. Paredes, D.F.B. Sarzosa, R. Savioli, T. Wierzbicki, D.Y. Jeong, D.C. Tyrell, Ductile tearing analysis of TC128 tank car steel under model I loading condition, Theor. Appl. Fract. Mech. 96 (2018) 658-675. 

  32. M. Paredes, V. Grolleau, T. Wierzbicki, On ductile fracture of 316L stainless steels at room and cryogenic temperature level, Materialia 10 (2020) 100624. 

  33. K.J.R. Rasmussen, Full-range stress-strain curves for stainless steel alloys, J. Constr. Steel Res. 59 (2003) 47-61. 

  34. I. Arrayago, E. Real, L. Gardner, Description of stress-strain curves for stainless steel alloys, Mater. Des. 87 (2015) 540-552. 

  35. K. Abdella, Inversion of a full-range stress-strain relation for stainless steel alloys, Int. J. Non Lin. Mech. 41 (2006) 456-463. 

  36. W.M. Quach, J.G. Teng, K.F. Chung, Three-stage full-range stress-strain model for stainless steels, J. Struct. Eng. 134 (2008) 1518-1527. 

  37. ASME, Materials, ASME Boiler and Pressure Vessel Code Section II, 2015. 

  38. ASTM, Standard Test Methods for Tension Testing of Metallic Materials, ASTM E8/E8M-09, 2009. 

  39. P.W. Bridgman, Studies in Large Plastic Flow and Fracture, Harvard University Press, USA, 1964. 

  40. N.E. Dowling, Mechanical Behavior of Materials, fourth ed., Pearson Education, England, 2012. 

  41. A. Considere, Ann. Ponts Chaussees 9 (1885) 574-605. 

  42. H.D. Kweon, E.J. Heo, D.W. Lee, J.W. Kim, A methodology for determining the true stress-strain curve of SA-508 low alloy steel from a tensile test with finite element analysis, J. Mech. Sci. Technol. 32 (2018) 3137-3143. 

  43. ABAQUS Analysis User's Guide, Version 2019, Dassault Systems, 2019. 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로