$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

공기와 활성탄 병용에 의한 용액 중 고농도 3가 비소의 산화-침전 거동 연구
Behavior of Oxidative Precipitation of High-Arsenic (III) Solution Utilizing Activated Carbon with Air Injection 원문보기

Resources recycling = 자원리싸이클링, v.30 no.4, 2021년, pp.11 - 19  

김리나 (한국지질자원연구원 광물자원연구본부 자원회수연구센터) ,  김가희 (한국지질자원연구원 DMR 융합연구단) ,  김관호 (한국지질자원연구원 DMR 융합연구단) ,  유광석 (한국지질자원연구원 DMR 융합연구단)

초록
AI-Helper 아이콘AI-Helper

황화 광석으로부터 유래된 고농도 비소 함유 침출 용액에 대하여 공기와 활성탄 병용을 통해 비소를 산화 및 침전 제거하는 연구를 수행하였다. 침출 용액은 국내 황화 광석 시료를 pH 1, 50℃ 조건의 황산 용액에서 95시간동안 침출하여 제조하였으며, 침출 용액 내 금속이온 농도 분석 결과 Fe가 약 7 g/L, As가 약 3 g/L 함유된 것으로 측정되었다. 해당 용액에 대하여 공기와 활성탄 병용 시 비소의 산화 및 침전 효과를 파악하기 위해 5가지 산화 조건(공기 주입, 공기와 1, 5, 10 w/v% 활성탄 투입, H2O2 투입) 하에 초기 pH 1, 90℃에서 72시간 동안 산화 및 침전 실험을 수행하였다. 실험 결과 공기와 활성탄을 함께 투입한 경우 활성탄 표면에 생성된 작용기로 인해 산화 반응의 속도가 빠르고 비소 제거율이 향상되는 것으로 분석되었다. 또한, 활성탄의 투입량이 증가할수록 반응의 효율이 향상되었으며, 5 w/v% 이상의 활성탄 투입 시 약 93-94%의 비소가 제거된 것으로 분석되었다. 침전 생성물에 대한 XRD 분석 결과 산화 반응에 의해 스코로다이트(FeAsO4·2H2O)가 잘 생성된 것으로 나타났다.

Abstract AI-Helper 아이콘AI-Helper

Arsenic (As) oxidation followed by precipitation from a high-As(III)-containing leaching solution derived from a sulfidic ore was investigated in this study to remove aqueous As from the solution using activated carbon (AC) with air injection as an oxidant. To obtain the initial leaching solution, a...

주제어

표/그림 (7)

참고문헌 (16)

  1. U.S. Geological Survey, 2020 : Mineral commodity summaries 2020, U.S. Geological Survey. 

  2. Marsden, J.O., and House, C.I., 2006 : The Chemistry of Gold Extraction, 2nd Edition, SME, Co, USA. 

  3. Rodriguez-Freire, L., Moore, S.E., Sierra-Alvarez, R., et al., 2016 : Arsenic remediation by formation of arsenic sulfide minerals in a continuous anaerobic bioreactor, Biotechnology and Bioengineering, 113(3), pp.522-530. 

  4. Wu, C., Mahandra, H., Radzinski, R., et al., 2020 : Green catalytic process for in situ oxidation of Arsenic(III) in concentrated streams using activated carbon and oxygen gas, Chemosphere, 261, 127688. 

  5. Wu, C., Mahandra, H., Ghahreman, A., 2020 : Novel continuous column process for As(III) oxidation from concentrated acidic solutions with activated carbon catalysis, Industrial and Engineering Chemistry Research, 59, pp. 9882-9889. 

  6. Jain, C.K. and Ali, I., 2000 : Arsenic: Occurrence, toxicity and speciation techniques, Water Research, 34(17), pp.4304-4312. 

  7. Bissen, M. and Frimmel, F.H., 2003 : Arsenic - a Review. Part I : Occurrence, toxicity, speciation, mobility, Acta hydrochimica et hydrobiologica, 31(1), pp.9-18. 

  8. Nazari, A., Radzinski, R., Ghahreman, A., 2016 : Review of arsenic metallurgy: Treatment of arsenical minerals and the immobilization of arsenic, Hydrometallurgy, 174, pp. 258-281. 

  9. Filippou, D. and Demopoulos, G.P., 1997 : Arsenic immobilization by controlled scorodite precipitation, JOM, 49, pp.52-55. 

  10. Ruonala, M., Leppinen, J., Miettinen, V., 2014 : US. 8790516B2. 

  11. Choi, Y., Ghahremaninezhad, A., Ahern, N., 2014 : US. 20140356261A1. 

  12. Fujita, T., Taguchi, R., Abumiya, M., et al., 2009 : Effect of pH on atmospheric scorodite synthesis by oxidation of ferrous ions : Physical properties and stability of the scorodite, Hydrometallurgy, 96, pp.189-198. 

  13. Kim, G., Kim, R., You, K., et al., 2021 : Leaching behavior of heavy metals from an ore containing high concentration As utilizing Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans, Resources Recycling, 30(2), pp.14-23. 

  14. Lorenzen, L., van Deventer, J.S.J., Landi, W.M., 1995 : Factors affecting the mechanism of the adsorption of arsenic species on activated carbon, Minerals Engineering, 8(4-5), pp.557-569. 

  15. Bluteau, M.-C. and Demopoulos, G.P., 2007 : The incongruent dissolution of scorodite - Solubility, kinetics and mechanism, Hydrometallurgy, 87, pp.163-177. 

  16. Zhu, X., Nordstrom, D.K., McCleskey, R.B., et al., 2019 : On the thermodynamics and kinetics of scorodite dissolution, Geochimical et Cosmochimica Acta, 265, pp.468-477. 

저자의 다른 논문 :

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로