$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

GPR 자료 해석에 유용한 속성들 소개 및 적용 사례 분석
Introduction to Useful Attributes for the Interpretation of GPR Data and an Analysis on Past Cases 원문보기

지구물리와 물리탐사 = Geophysics and geophysical exploration, v.24 no.3, 2021년, pp.113 - 130  

유희은 (세종대학교 에너지자원공학과) ,  정인석 (세종대학교 에너지자원공학과) ,  임보성 (한국석유공사) ,  남명진 (세종대학교 에너지자원공학과)

초록
AI-Helper 아이콘AI-Helper

지반 침하, 도로 안전성과 같은 사회적 이슈로 지하 공동 분포를 조사하기 위한 지표투과레이더(ground penetrating radar, GPR) 탐사가 활발히 진행되면서 자료의 양도 함께 증가하고 있다. 하지만 비용과 시간의 효율성을 고려해보았을 때, 모든 자료를 해석할 수 없기 때문에 더욱 직관적이고 정확한 판단이 가능한 해석법이 필요하다. 이러한 문제를 개선하기 위해 정량적 해석이 가능한 속성 분석법이 제안되고 있다. 탄성파 해석에서 많이 사용해온 속성 분석 중 GPR 자료에 적용할 수 있는 속성으로는 복소 트레이스(complex trace)와 유사성(similarity)이 대표적이다. 또한, 최근 영상처리 기술의 발달로 개발된 새로운 속성인 모서리탐지 속성, 이미지 질감 속성 등도 적용성이 있다. 이 논문에서는 GPR 자료 속성분석 연구의 기초를 마련하기 위해, GPR에 적용할 수 있는 속성 분석들을 소개하고 이들의 개념에 대해 기술한 뒤, 속성분석에 기초한 해석법과 다양한 분야에서 활용한 사례를 분석하고자 한다.

Abstract AI-Helper 아이콘AI-Helper

Recently, ground-penetrating radar (GPR) surveys have been actively employed to obtain a large amount of data on occurrences such as ground subsidence and road safety. However, considering the cost and time efficiency, more intuitive and accurate interpretation methods are required, as interpreting ...

주제어

표/그림 (18)

참고문헌 (39)

  1. Atekwana, E. A., Sauck, W. A., and Werkema Jr, D. D., 2000, Investigations of geoelectrical signatures at a hydrocarbon contaminated site, Journal of Applied Geophysics, 44(2-3), 167-180, https://scholar.google.co.kr/citations?view_opview_citation&hlja&usergRmYp8QAAAAJ&citation_for_viewgRmYp8QAAAAJ:u5HHmVD_uO8C 

  2. Atekwana, E. A., Sauck, W. A., Abdel Aal, G. Z., and Werkema Jr, D. D., 2002, Geophysical investigation of vadose zone conductivity anomalies at a hydrocarbon contaminated site: implications for the assessment of intrinsic bioremediation, Journal of Environmental & Engineering Geophysics, 7(3), 103-110, https://scholar.google.com/citations?view_opview_citation&hlen&userYL5VtkMAAAAJ&citation_-for_viewYL5VtkMAAAAJ:9vf0nzSNQJEC 

  3. Anstey, N., 2005, Attributes in color: the early years, CSEG Recorder, 30(3), 12-15, https://csegrecorder.com/articles/view/attributes-in-color-the-early-years 

  4. Bahorich, M., and Farmer, S., 1995, 3-D seismic discontinuity for faults and stratigraphic features: The coherence cube, The Leading Edge, 14(10), 1053-1058, https://scholar.google.com/citations?view_opview_citation&hlen&userQn8DojsAAAAJ&citation_for_viewQn8DojsAAAAJ:eQOLeE2rZwMC 

  5. Baker, G. S., Steeples, D. W., Schmeissner, C., Pavlovic, M., and Plumb, R., 2001, Near-surface imaging using coincident seismic and GPR data, Geophysical Research Letters, 28(4), 627-630, https://www.researchgate.net/publication/248813691_Near-surface_imaging_using_coincident_seismic_and_GPR_data 

  6. Bodine, J. H., 1984, Waveform analysis with seismic attributes. In SEG Technical Program Expanded Abstracts 1984 (505-509). Society of Exploration Geophysicists, https://library.seg.org/doi/abs/10.1190/1.1894172 

  7. Boeniger, U., and Tronicke, J., 2010, Improving the interpretability of 3D GPR data using target-specific attributes: application to tomb detection, Journal of Archaeological Science, 37(2), 360-367, DOI: 10.1016/j.jas.2010.01.013 

  8. Chopra, S., and Alexeev, V., 2006, Applications of texture attribute analysis to 3D seismic data, The Leading Edge, 25(8), 934-940, https://doi.org/10.1190/1.2335155 

  9. Chopra, S., and Marfurt, K. J., 2005, Seismic attributes-A historical perspective, Geophysics, 70(5), 3SO-28SO, https://doi.org/10.1190/1.2098670 

  10. Chopra, S., and Marfurt, K. J., 2007, Seismic attributes for prospect identification and reservoir characterization, Society of Exploration Geophysicists and European Association of Geoscientists and Engineers, https://doi.org/10.1190/1.9781560801900 

  11. Davis, J. L., and Annan, A. P., 1989, Ground-penetrating radar for high-resolution mapping of soil and rock stratigraphy 1, Geophysical Prospecting, 37(5), 531-551, https://doi.org/10.1111/j.1365-2478.1989.tb02221.x 

  12. De Rooij, M., and Tingdahl, K., 2002, Meta-attributes-the key to multivolume, multiattribute interpretation, The Leading Edge, 21(10), 1050-1053, http://dx.doi.org/10.1190/1.1518445 

  13. Dossi, M., Forte, E., and Pipan, M., 2015, Auto-picking and phase assessment by means of attribute analysis applied to GPR pavement inspection, 2015 8th International Workshop on Advanced Ground Penetrating Radar (IWAGPR), 1-4, http://dx.doi.org/10.1109/IWAGPR.2015.7292637 

  14. Dubois, L. H., and Nuzzo, R. G., 1992, Synthesis, structure, and properties of model organic surfaces, Annual Review of Physical Chemistry, 43(1), 437-463, https://doi.org/10.1146/annurev.pc.43.100192.002253 

  15. Fisher, E., McMechan, G. A., and Annan, A. P., 1992, Acquisition and processing of wide-aperture ground-penetrating radar data, Geophysics, 57(3), 495-504, https://doi.org/10.1190/1.1443265 

  16. Forte, E., and Pipan, M., 2008, Integrated seismic tomography and ground-penetrating radar (GPR) for the high-resolution study of burial mounds (tumuli), Journal of Archaeological Science, 35(9), 2614-2623, https://doi.org/10.1016/j.jas.2008.04.024 

  17. Gao, D., 2003, Volume texture extraction for 3D seismic visualization and interpretation, Geophysics, 68(4), 1294-1302, https://doi.org/10.1190/1.1598122 

  18. Gao, D., 2011, Latest developments in seismic texture analysis for subsurface structure, facies, and reservoir characterization: A review, Geophysics, 76(2), 1-13, http://dx.doi.org/10.1190/1.3553479 

  19. Haralick, R. M., Shanmugam, K., and Dinstein, I. H., 1973, Textural features for image classification, IEEE Transactions on Systems, Man, and Cybernetics, 6, 610-621, https://doi.org/10.1109/TSMC.1973.4309314 

  20. Harris, C. G., and Stephens, M., 1988, A combined corner and edge detector, Alvey Vision Conference, 10-5244, http://citeseer.ist.psu.edu/viewdoc/summary?doi10.1.1.231.1604 

  21. Hwang, Y. K., Endres, A. L., Piggott, S. D., and Parker, B. L., 2008, Long-term ground penetrating radar monitoring of a small volume DNAPL release in a natural groundwater flow field, Journal of Contaminant Hydrology, 97(1-2), 1-12, https://doi.org/10.1016/j.jconhyd.2007.11.004 

  22. Kim, B., Seol, S. J., and Byun, J., 2017, Application of image processing techniques to GPR data for the reliability improvement in subsurface void analysis, Geophysics and Geophysical Exploration, 20(2), 61-7 (in Korean with English abstract), https://doi.org/10.7582/GGE.2017.20.2.061 

  23. Liu, L., and Oristaglio, M., 1998, May GPR signal analysis: Instantaneous parameter estimation using the wavelet transform, In Proceedings of the 7th International Conference on Ground Penetrating Radar (219-224), https://www.semanticscholar.org/paper/GPR-SIGNAL-ANALYSIS-%3AINSTANTANEOUS-PARAMETER-USING-Liu/3e874328741f9178b5b43fec150b0c9ce4cba5e1 

  24. Love, P. L., and Simaan, M., 1984, Segmentation of stacked seismic data by the classification of image texture, SEG Technical Program Expanded Abstracts 1984 (480-482), Society of Exploration Geophysicists, https://doi.org/10.1190/1.1894051 

  25. Lu, Q., Wang, Y., and Li, H., 2021, GPR attribute analysis for the detection of LNAPL contaminated soils, IOP Conference Series: Earth and Environmental Science, 660(1), 12-33, https://iopscience.iop.org/article/10.1088/1755-1315/660/1/012033/meta 

  26. Marfurt, K. J., Kirlin, R. L., Farmer, S. L., and Bahorich, M. S., 1998, 3-D seismic attributes using a semblance-based coherency algorithm, Geophysics, 63(4), 1150-1165, https://doi.org/10.1190/1.1444415 

  27. Morris, I., Abdel-Jaber, H., and Glisic, B., 2019, Quantitative attribute analyses with ground penetrating radar for infrastructure assessments and structural health monitoring, Sensors, 19(7), 1637, https://doi.org/10.3390/s19071637 

  28. Nuzzo, L., Leucci, G., Negri, S., Carrozzo, M. T., and Quarta, T., 2002, Application of 3D visualization techniques in the analysis of GPR data for archaeology, Annals of Geophysics, http://hdl.handle.net/2122/721 

  29. Patterson, J. E., and Cook, F. A., 2000, Application of complex trace analysis for improved target identification in gemtourmaline-bearing pegmatites in the Himalaya mine, San Diego County, California, 8th International Conference on Ground Penetrating Radar, 653-657, https://doi.org/10.1117/12.383537 

  30. Taner, M. T., and Sheriff, R. E., 1977, Application of amplitude, frequency, and other attributes to stratigraphic and hydrocarbon determination: Section 2. Application of seismic reflection configuration to stratigraphic interpretation, American Association of Petroleum Geologists, https://archives.datapages.com/data/specpubs/seismic1/data/a165/a165/0001/0300/0301.htm 

  31. Taner, M. T., Koehler, F., and Sheriff, R. E., 1979, Complex seismic trace analysis, Geophysics, 44(6), 1041-1063, https://doi.org/10.1190/1.1440994 

  32. Taner, M. T., 2001, Seismic attributes, CSEG Recorder, 26(7), 49-56, https://csegrecorder.com/articles/view/seismic-attributes 

  33. Tillard, S., and Dubois, J. C., 1995, Analysis of GPR data: Wave propagation velocity determination, Journal of Applied Geophysics, 33(1-3), 77-91, https://doi.org/10.1016/0926-9851(95)90031-4 

  34. Ursin, B., 1983, Review of elastic and electromagnetic wave propagation in horizontally layered media, Geophysics, 48(8), 1063-1081, https://doi.org/10.1190/1.1441529 

  35. Young, R. A., Deng, Z., Marfurt, K. J., and Nissen, S. E., 1997, 3-D dip filtering and coherence applied to GPR data: A study, The Leading Edge, 16(6), 921-928, https://doi.org/10.1190/1.1437699 

  36. Zhao, W. K., Tian, G., Wang, B. B., Shi, Z. J., and Lin, J. X., 2012, Application of 3D GPR attribute technology in archaeological investigations, Applied Geophysics, 9(3), 261-269, https://doi.org/10.1007/s11770-012-0336-2 

  37. Zhao, W., Forte, E., Pipan, M., and Tian, G., 2013, Ground penetrating radar (GPR) attribute analysis for archaeological prospection. Journal of Applied Geophysics, 97, 107-117, https://doi.org/10.1016/j.jappgeo.2013.04.010 

  38. Zhao, W., Forte, E., and Pipan, M., 2016a, Texture attribute analysis of GPR data for archaeological prospection, Pure and Applied Geophysics, 173(8), 2737-2751, https://doi.org/10.1007/s00024-016-1355-3 

  39. Zhao, W. K., Forte, E., Dossi, M., and Pipan, M., 2016b, Integrated attribute analysis for improved GPR data interpretation, 6th International Conference on Ground Penetrating Radar (GPR) (1-5), DOI: 10.1109/ICGPR.2016.7572678 

저자의 다른 논문 :

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로