$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

기상청 기후예측시스템(GloSea6) - Part 1: 운영 체계 및 개선 사항
The KMA Global Seasonal Forecasting System (GloSea6) - Part 1: Operational System and Improvements 원문보기

대기 = Atmosphere, v.31 no.3, 2021년, pp.341 - 359  

김혜리 (국립기상과학원 현업운영개발부) ,  이조한 (국립기상과학원 현업운영개발부) ,  현유경 (국립기상과학원 현업운영개발부) ,  황승언 (국립기상과학원 현업운영개발부)

Abstract AI-Helper 아이콘AI-Helper

This technical note introduces the new Korea Meteorological Administration (KMA) Global Seasonal forecasting system version 6 (GloSea6) to provide a reference for future scientific works on GloSea6. We describe the main areas of progress and improvements to the current GloSea5 in the scientific and ...

주제어

표/그림 (11)

참고문헌 (73)

  1. Adcroft, A., and J.-M. Campin, 2004: Rescaled height coordinates for accurate representation of free-surface flows in ocean circulation models. Ocean Model., 7, 269-284, doi:10.1016/j.ocemod.2003.09.003. 

  2. Adler, R. F., and Coauthors, 2018: The Global Precipitation Climatology Project (GPCP) monthly analysis (New version 2.3) and a review of 2017 global precipitation. Atmosphere, 9, 138, doi:10.3390/atmos9040138. 

  3. Arakawa, A., 1966: Computational design for long-term numerical integration of the equations of fluid motion: Two-dimensional incompressible flow. Part I. J. Comput. Phys., 1, 119-143. 

  4. Baran, A. J., P. Hill, D. Walters, S. C. Hardman, K. Furtado, P. R. Field, and J. Manners, 2016: The impact of two coupled cirrus microphysics-radiation parameterizations on the temperature and specific humidity biases in the tropical tropopause layer in a climate model. J. Climate, 29, 5299-5316, doi:10.1175/JCLID-15-0821.1. 

  5. Beckmann, A., and R. Doscher, 1997: A method for improved representation of dense water spreading over topography in geopotential-coordinate models. J. Phys. Oceanogr., 27, 581-591. 

  6. Bernie, D. J., S. J. Woolnough, J. M. Slingo, and E. Guilyardi, 2005: Modeling diurnal and intraseasonal variability of the ocean mixed layer. J. Climate, 18, 1190-1202. 

  7. Best, M. J., and Coauthors, 2011: The Joint UK Land Environment Simulator (JULES), model description - Part 1: Energy and water fluxes. Geosci. Model Dev., 4, 677-699, doi:10.5194/gmd-4-677-2011. 

  8. Bigg, G. R., M. R. Wadley, D. P. Stevens, and J. A. Johnson, 1997: Modelling the dynamics and thermodynamics of icebergs. Cold Reg. Sci. Technol., 26, 113-135. 

  9. Bitz, C. M., and W. H. Lipscomb, 1999: An energy-conserving thermodynamic model of sea ice. J. Geophys. Res. Oceans, 104, 15669-15677, doi:10.1029/ 1999JC900100. 

  10. Blockley, E. W., and Coauthors, 2014: Recent development of the Met Office operational ocean forecasting system: an overview and assessment of the new Global FOAM forecasts. Geosci. Model Dev., 7, 2613-2638, doi:10.5194/gmd-7-2613-2014. 

  11. Boutle, I. A., and S. J. Abel, 2012: Microphysical controls on the stratocumulus topped boundary-layer structure during VOCALS-Rex. Atmos. Chem. Phys., 12, 2849-2863, doi:10.5194/acp-12-2849-2012. 

  12. Boutle, I. A., and S. J. Abel, P. G. Hill, and C. J. Morcrette, 2014: Spatial variability of liquid cloud and rain: observations and microphysical effects. Q. J. R. Meteorol. Soc., 140, 583-594, doi:10.1002/qj.2140. 

  13. Bowler, N. E., A. Arribas, S. E. Beare, K. R. Mylne, and G. J. Shutts, 2009: The local ETKF and SKEB: upgrades to the MOGREPS short-range ensemble prediction system. Q. J. R. Meteorol. Soc., 135, 767-776. 

  14. Brown, A., S. Milton, M. Cullen, B. Golding, J. Mitchell, and A. Shelly, 2012: Unified modeling and prediction of weather and climate: A 25-year journey. Bull. Amer. Meteor. Soc., 93, 1865-1877, doi:10.1175/BAMS-D-12-00018.1. 

  15. Dee D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc., 137, 553-597, doi:10.1002/qj.828. 

  16. Derbyshire, S. H., A. V. Maidens, S. F. Milton, R. A. Stratton, and M. R. Willett, 2011: Adaptive detrainment in a convective parametrization. Q. J. R. Meteorol. Soc., 137, 1856-1871, doi:10.1002/qj.875. 

  17. Edson, J. B., 2009: Review of air-sea transfer processes. Conf. Paper, ECMWF workshop on atmosphere-ocean interactions 2008, European Centre for Medium-Range Weather Forecasts, 7-24. 

  18. Edwards, J. M., and A. Slingo, 1996: Studies with a flexible new radiation code. I: Choosing a configuration for a largescale model. Q. J. R. Meteorol. Soc., 122, 689-719. 

  19. Field, P. R., A. A. Hill, K. Furtado, and A. Korolev, 2014: Mixed-phase clouds in a turbulent environment. Part 2: Analytic treatment. Q. J. R. Meteorol. Soc., 140, 870-880, doi:10.1002/qj.2175. 

  20. Flocco, D., D. L. Feltham, and A. K. Turner, 2010: Incorporation of a physically based melt pond scheme into the sea ice component of a climate model. J. Geophys. Res. Oceans, 115, C08012, doi:10.1029/2009JC005568. 

  21. Gaspar, P., Y. Gregoris, and J. M. Lefevre, 1990: A simple eddy kinetic energy model for simulations of the oceanic vertical mixing: Tests at station Papa and longterm upper ocean study site. J. Geophys. Res. Oceans, 95, 16179-16193. 

  22. Grant, A. L. M., 2001: Cloud-base fluxes in the cumuluscapped boundary layer. Q. J. R. Meteorol. Soc., 127, 407-421. 

  23. Gregory, D., and P. R. Rowntree, 1990: A mass flux convection scheme with representation of cloud ensemble characteristics and stability-dependent closure. Mon. Wea. Rev., 118, 1483-1506. 

  24. Gregory, D., and S. Allen, 1991: The effect of convective scale downdraughts upon NWP and climate simulations. 9th conference on numerical weather prediction, Denver, Colorado, Amer. Meteor. Soc., 122-123. 

  25. Hersbach, H., and D. Dee, 2016: ERA5 reanalysis is in production. ECMWF Newslett., 147, 7. 

  26. Hill, P. G., J. Manners, and J. C. Petch, 2011: Reducing noise associated with the Monte Carlo Independent Column Approximation for weather forecasting models. Q. J. R. Meteorol. Soc., 137, 219-228, doi:10.1002/qj.732. 

  27. Hill, P. G., C. J. Morcrette, and I. A. Boutle, 2015: A regimedependent parametrization of subgrid-scale cloud water content variability. Q. J. R. Meteorol. Soc., 141, 1975-1986, doi:10.1002/qj.2506. 

  28. Hirsch, A. L., J. Kala, A. J. Pitman, C. Carouge, J. P. Evans, V. Haverd, and D. Mocko, 2014: Impact of land surface initialization approach on subseasonal forecast skill: A regional analysis in the Southern Hemisphere. J. Hydrometeor., 15, 300-319, doi:10.1175/JHM-D13-05.1. 

  29. Hollingsworth, A., P. Kallberg, V. Renner, and D. M. Burridge, 1983: An internal symmetric computational instability. Q. J. R. Meteorol. Soc., 109, 417-428, doi:10.1002/qj.49710946012. 

  30. Hunke, E. C., and W. H. Lipscomb, 2010: CICE: The Los Alamos sea ice model documentation and software user's manual, version 4.1. Los Alamos National Laboratory, LA-CC-06-012, 76 pp. 

  31. Jin, Z., Y. Qiao, Y. Wang, Y. Fang, and W. Yi, 2011: A new parameterization of spectral and broadband ocean surface albedo. Opt. Express, 19, 26429-26443, doi: 10.1364/OE.19.026429. 

  32. Khairoutdinov, M., and Y. Kogan, 2000: A new cloud physics parameterization in a large-eddy simulation model of marine stratocumulus. Mon. Wea. Rev., 128, 229-243. 

  33. Kim, D.-K., Y.-H. Kim, and C. Yoo, 2019: Predictability of Northern Hemisphere teleconnection patterns in GloSea5 hindcast experiments up to 6 weeks. Atmosphere, 29, 295-309, doi:10.14191/Atmos.2019.29.3.295 (in Korean with English abstract). 

  34. Kobayashi, S., and Coauthors, 2015: The JRA-55 reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan Ser.II, 93, 5-48, doi:10.2151/jmsj.2015-001. 

  35. Large, W. G., and S. Yeager, 2004: Diurnal to decadal global forcing for ocean and sea-ice models: The data sets and flux climatologies. NCAR Tech. No. NCAR/TN-460+STR, 105 pp. 

  36. Larson, J., R. Jacob, and E. Ong, 2005: The Model Coupling Toolkit: A new fortran90 toolkit for building multiphysics parallel coupled models. Int. J. High Perf. Comp. App., 19, 277-292. 

  37. Lee, H., P.-H. Chang, K. Kang, H.-S. Kang, and Y. Kim, 2018: Assessment of ocean surface current forecasts from high resolution Global Seasonal Forecast System version 5. Ocean Polar Res., 40, 99-114, doi: 10.4217/OPR.2018.40.3.099 (in Korean with English abstract). 

  38. Lee, S.-J., Y.-K. Hyun, S.-M. Lee, S.-O. Hwang, J. Lee, and K.-O. Boo, 2020: Prediction skill for East Asian summer monsoon indices in a KMA Global Seasonal Forecasting System (GloSea5). Atmosphere, 30, 293-309, doi:10.14191/Atmos.2020.30.3.293 (in Korean with English abstract). 

  39. Lim, S.-M., Y.-K. Hyun, H.-S. Kang, and S.-W. Yeh, 2018: Prediction skill of East Asian precipitation and temperature associated with El Nino in GloSea5 hindcast data. Atmosphere, 28, 37-51, doi:10.14191/Atmos.2018.28.1.037 (in Korean with English abstract). 

  40. Lock, A. P., 2001: The numerical representation of entrainment in parameterizations of boundary layer turbulent mixing. Mon. Wea. Rev., 129, 1148-1163. 

  41. Lock, A. P., A. R. Brown, M. R. Bush, G. M. Martin, and R. N. B. Smith, 2000: A new boundary layer mixing scheme. Part I: Scheme description and single-column model tests. Mon. Wea. Rev., 128, 3187-3199. 

  42. Lott, F., and M. J. Miller, 1997: A new subgrid-scale orographic drag parametrization: Its formulation and testing. Q. J. R. Meteorol. Soc., 123, 101-127. 

  43. MacLachlan, C., and Coauthors, 2015: Global Seasonal forecast system version 5 (GloSea5): a high-resolution seasonal forecast system. Q. J. R. Meteorol. Soc., 141, 1072-1084, doi:10.1002/qj.2396. 

  44. Madec, G., 2008: NEMO ocean engine. Note du Pole de modelisation de l'Institut Pierre-Simon Laplace 27, 300 pp. 

  45. Marsh, R., and Coauthors, 2015: NEMO-ICB (v1.0): interactive icebergs in the NEMO ocean model globally configured at eddy-permitting resolution. Geosci. Model Dev., 8, 1547-1562, doi:10.5194/gmd-8-1547-2015. 

  46. Mathiot, P., A. Jenkins, C. Harris, and G. Madec, 2017: Explicit representation and parametrised impacts of under ice shelf seas in the z * coordinate ocean model NEMO 3.6. Geosci. Model Dev., 10, 2849-2874, doi:10.5194/gmd-10-2849-2017. 

  47. Mogensen, K. S., M. A. Balmaseda, A. Weaver, M. Martin, and A. Vidard, 2009: NEMOVAR: A variational data assimilation system for the NEMO ocean model. ECMWF Newslett., 120, 17-21. 

  48. Paolino, D. A., J. L. Kinter III, B. P. Kirtman, D. Min, and D. M. Straus, 2012: The impact of land surface and atmospheric initialization on seasonal forecasts with CCSM. J. Climate, 25, 1007-1021, doi:10.1175/2011JCLI3934.1. 

  49. Pearson, K. J., G. M. S. Lister, C. E. Birch, R. P. Allan, R. J. Hogan, and S. J. Woolnough, 2014: Modelling the diurnal cycle of tropical convection across the 'grey zone'. Q. J. R. Meteorol. Soc., 140, 491-499, doi:10.1002/qj.2145. 

  50. Prodhomme, C., F. Doblas-Reyes, O. Bellprat, and E. Dutra, 2016: Impact of land-surface initialization on sub-seasonal to seasonal forecasts over Europe. Climate Dyn., 47, 919-935, doi:10.1007/s00382-015-2879-4. 

  51. Ridley, J. K., E. W. Blockley, A. B. Keen, J. G. L. Rae, A. E. West, and D. Schroeder, 2018: The sea ice model component of HadGEM3-GC3.1. Geosci. Model Dev., 11, 713-723, doi:10.5194/gmd-11-713-2018. 

  52. Rodgers, K. B., and Coauthors, 2014: Strong sensitivity of Southern Ocean carbon uptake and nutrient cycling to wind stirring. Biogeosciences, 11, 4077-4098, doi: 10.5194/bg-11-4077-2014. 

  53. Rothman, L. S., and Coauthors, 2013: The HITRAN2012 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transfer, 130, 4-50, doi:10.1016/j.jqsrt.2013.07.002. 

  54. Roullet, G., and G. Madec, 2000: Salt conservation, free surface, and varying levels: A new formulation for ocean general circulation models. J. Geophys. Res. Oceans, 105, 23927-23942, doi:10.1029/2000JC900089. 

  55. Sanchez, C., K. D. Williams, and M. Collins, 2016: Improved stochastic physics schemes for global weather and climate models. Q. J. R. Meteorol. Soc., 142, 147-159, doi:10.1002/qj.2640. 

  56. Scaife, A. A., N. Butchart, C. D. Warner, and R. Swinbank, 2002: Impact of a spectral gravity wave parameterization on the stratosphere in the Met Office Unified Model. J. Atmos. Sci., 59, 1473-1489. 

  57. Simmons, H. L., S. R. Jayne, L. C. S., Laurent, and A. J. Weaver, 2004: Tidally driven mixing in a numerical model of the ocean general circulation. Ocean Modelling, 6, 245-263. 

  58. Smith, R. N. B., 1990: A scheme for predicting layer clouds and their water content in a general circulation model. Q. J. R. Meteorol. Soc., 116, 435-460. 

  59. Storkey, D., and Coauthors, 2018: UK Global Ocean GO6 and GO7: a traceable hierarchy of model resolutions. Geosci. Model Dev., 11, 3187-3213, doi:10.5194/gmd-11-3187-2018. 

  60. Tennant, W. J., G. J. Shutts, A. Arribas, and S. A. Thompson, 2011: Using a stochastic kinetic energy backscatter scheme to improve MOGREPS probabilistic forecast skill. Mon. Wea. Rev., 139, 1190-1206, doi:10.1175/2010MWR3430.1. 

  61. UK Met Office, 2005: OSTIA L4 SST Analysis. Ver. 1.0. PO.DAAC, CA, USA. Dataset accessed [2020-06-01] [Available online at https://doi.org/10.5067/GHOST4FK01]. 

  62. Valcke, S., 2013: The OASIS3 coupler: a European climate modelling community software. Geosci. Model Dev., 6, 373-388, doi:10.5194/gmd-6-373-2013. 

  63. Walters, D. N., and Coauthors, 2011: The Met Office Unified Model global atmosphere 3.0/3.1 and JULES global land 3.0/3.1 configurations. Geosci. Model Dev., 4, 919-941, doi:10.5194/gmd-4-919-2011. 

  64. Walters, D. N., and Coauthors, 2019: The Met Office Unified Model Global Atmosphere 7.0/7.1 and JULES Global Land 7.0 configurations. Geosci. Model Dev., 12, 1909-1963. 

  65. Warner, C. D., and M. E. McIntyre, 2001: An ultrasimple spectral parameterization for nonorographic gravity waves. J. Atmos. Sci., 58, 1837-1857. 

  66. Williams, K. D., and Coauthors, 2015: The met office global coupled model 2.0 (GC2) configuration. Geosci. Model Dev., 8, 1509-1524, doi:10.5194/gmd-8-1509-2015. 

  67. Williams, K. D., and Coauthors, 2017: The Met Office Global Coupled Model 3.0 and 3.1 (GC3.0 and GC3.1) configurations. J. Adv. Model. Earth Sys., 10, 357-380, doi:10.1002/2017MS001115. 

  68. Wilson, D. R., and S. P. Ballard, 1999: A microphysically based precipitation scheme for the UK Meteorological Office Unified Model. Q. J. R. Meteorol. Soc., 125, 1607-1636. 

  69. Wilson, D. R., A. C. Bushell, A. M. Kerr-Munslow, J. D. Price, and C. J. Morcrette, 2008a: PC2: A prognostic cloud fraction and condensation scheme. I: Scheme description. Q. J. R. Meteorol. Soc., 134, 2093-2107, doi: 10.1002/qj.333. 

  70. Wilson, D. R., A. C. Bushell, A. M. Kerr-Munslow, J. D. Price, and C. J. Morcrette, and A. BodasSalcedo, 2008b: PC2: A prognostic cloud fraction and condensation scheme. II: Climate model simulations. Q. J. R. Meteorol. Soc., 134, 2109-2125, doi:10.1002/qj.332. 

  71. Wood, N., and Coauthors, 2014: An inherently mass-conserving semi-implicit semi-Lagrangian discretization of the deep-atmosphere global non-hydrostatic equations. Q. J. R. Meteorol. Soc., 140, 1505-1520. 

  72. Xie, P., and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78, 2539-2558. 

  73. Zerroukat, M., and T. Allen, 2015: On the monotonic and conservative transport on overset/Yin-Yang grids. J. Comput. Phys., 302, 285-299, doi:10.1016/j.jcp.2015.09.006. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로