$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

기상청 기후예측시스템(GloSea6) - Part 2: 기후모의 평균 오차 특성 분석
The KMA Global Seasonal forecasting system (GloSea6) - Part 2: Climatological Mean Bias Characteristics 원문보기

대기 = Atmosphere, v.32 no.2, 2022년, pp.87 - 101  

현유경 (국립기상과학원 현업운영개발부 기후모델개발팀) ,  이조한 (국립기상과학원 현업운영개발부 기후모델개발팀) ,  신범철 (국립기상과학원 현업운영개발부 기후모델개발팀) ,  최유나 (국립기상과학원 현업운영개발부 기후모델개발팀) ,  김지영 (국립기상과학원 현업운영개발부 기후모델개발팀) ,  이상민 (국립기상과학원 현업운영개발부 기후모델개발팀) ,  지희숙 (국립기상과학원 현업운영개발부 기후모델개발팀) ,  부경온 (국립기상과학원 현업운영개발부 기후모델개발팀) ,  임소민 (국립기상과학원 현업운영개발부 기후모델개발팀) ,  김혜리 (국립기상과학원 현업운영개발부 기후모델개발팀) ,  류영 (국립기상과학원 현업운영개발부 기후모델개발팀) ,  박연희 (국립기상과학원 현업운영개발부 기후모델개발팀) ,  박형식 (국립기상과학원 현업운영개발부 기후모델개발팀) ,  추성호 (국립기상과학원 현업운영개발부 기후모델개발팀) ,  현승훤 (국립기상과학원 현업운영개발부 기) ,  황승언

Abstract AI-Helper 아이콘AI-Helper

In this paper, the performance improvement for the new KMA's Climate Prediction System (GloSea6), which has been built and tested in 2021, is presented by assessing the bias distribution of basic variables from 24 years of GloSea6 hindcasts. Along with the upgrade from GloSea5 to GloSea6, the perfor...

주제어

표/그림 (11)

참고문헌 (32)

  1. Adler, F. A., and Coauthors, 2018: The Global Precipitation Climatology Project (GPCP) Monthly analysis (new version 2.3) and a review of 2017 global precipitation. Atmosphere, 9, 138, doi:10.3390/atmos9040138. 

  2. Ahn, M.-S., D. Kim, D. Kang, J. Lee, K. R. Sperber, P. J. Gleckler, X. Jiang, Y.-G. Ham, and H. Kim, 2020: MJO propagation across the Maritime Continent: Are CMIP6 models better than CMIP5 models? Geophys. Res. Lett., 47, e2020GL087250, doi:10.1029/2020GL087250. 

  3. Alberto, A., and Coauthors, 2011: The GloSea4 ensemble prediction system for seasonal forecasting. Mon. Wea. Rev., 139, 1891-1910, doi:10.1175/2010MWR3615.1. 

  4. Boutle, I. A., S. J. Abel, P. G. Hill, and C. J. Morcrette, 2014: Spatial variability of liquid cloud and rain: observations and microphysical effects. Q. J. R. Meteorol. Soc., 140, 583-594, doi:10.1002/qj.2140. 

  5. Chang, P.-H., S.-O. Hwang, S.-H. Choo, J. Lee, S.-M. Lee, and K.-O. Boo, 2021: Global Ocean Data Assimilation and Prediction System in KMA: Description and assessment. Atmosphere, 31, 229-240, doi:10.14191/Atmos.2021.31.2.229 (in Korean with English abstract). 

  6. Davis, P., C. Ruth, A. A. Scaife, and J. Kettleborough, 2020: A large ensemble seasonal forecasting system: GloSea6. Abstract, AGU Fall Meeting 2020, #A192-05, American Geophysical Union. 

  7. Dee, D. P., and Coauthors, 2011: The ERA-interim reanalysis: configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc., 137, 553-597, doi:10.1002/qj.828. 

  8. Gonzalez, A. O., and X. Jiang, 2017: Winter mean lower tropospheric moisture over the Maritime Continent as a climate model diagnostic metric for the propagation of the Madden-Julian oscillation. Geophys. Res. Lett., 44, 2588-2596, doi:10.1002/2016GL072430. 

  9. Hyun, Y.-K., J. Park, J. Lee, S. Lim, S.-I. Heo, H. Ham, S.-M. Lee, H.-S. Ji, and Y. Kim, 2020: Reliability assessment of temperature and precipitation seasonal probability in current climate prediction systems. Atmosphere, 30, 141-154, doi:10.14191/Atmos.2021.31.2.229 (in Korean with English abstract). 

  10. Kang, D., D. Kim, M.-S. Ahn, and S.-I. Ahn, 2021: The role of the background meridional moisture gradient on the propagation of the MJO over the Maritime Continent. J. Climate, 34, 6565-6581, doi:10.1175/JCLI-D-20-0085.1. 

  11. Kim, H., M. A. Janiga, and K. Pegion, 2019: MJO propagation processes and mean biases in the SubX and S2S reforecasts. J. Geophys. Res. Atmos., 124, 9314-9331, doi:10.1029/2019JD031139. 

  12. Kim, H., J. Lee, Y.-K. Hyun, and S.-O. Hwang, 2021a: The KMA Global Seasonal forecasting system (GloSea6) - Part 1: Operational system and improvements. Atmosphere, 31, 341-359, doi:10.14191/Atmos.2021.31.3. 341 (in Korean with English abstract). 

  13. Kim, J.-Y., Y.-K. Hyun, J. Lee, and B.-C. Shin, 2021b: Assessment on the East Asian summer monsoon simulation by improved Global Coupled (GC) model. Atmosphere, 31, 563-576, doi:10.14191/Atmos.2021.31.5.563 (in Korean with English abstract). 

  14. Kim, S.-W., H. Kim, K. Song, S.-W. Son, Y. Lim, H.-S. Kang, and Y.-K. Hyun, 2018: Subseasonal-to-seasonal (S2S) prediction skills of GloSea5 model: Part 1. Geopotential height in the Northern Hemisphere extratropics. Atmosphere, 28, 233-245, doi:10.14191/Atmos.2018.28.3.233 (in Korean with English abstract). 

  15. KMA, 2015: Long-range Forecast Work Manual, Korea Meteorological Administration, 110 pp [Available online at http://book.kma.go.kr] (in Korean). 

  16. Lee, S.-J., Y.-K. Hyun, S.-M. Lee, S.-O. Hwang, J. Lee, and K.-O. Boo, 2020: Prediction skill for East Asian summer monsoon indices in a KMA Global Seasonal forecasting system (GloSea5). Atmosphere, 30, 293-309, doi:10.14191/Atmos.2020.30.3.293 (in Korean with English abstract). 

  17. Lim, S., Y.-K. Hyun, H. Ji, and J. Lee, 2021: Application of land initialization and its impact in KMA's operational climate prediction system. Atmosphere, 31, 327-340, doi:10.14191/Atmos.2021.31.3.327 (in Korean with English abstract). 

  18. MacLachlan C., and Coauthors, 2015: Global Seasonal forecast system version 5 (GloSea5): a high-resolution seasonal forecast system. Q. J. R. Meteorol. Soc., 141, 1072-1084, doi:10.1002/qj.2396. 

  19. Megann, A., D. Storkey, Y. Aksenov, S. Alderson, D. Calvert, T. Graham, P. Hyder, J. Siddorn, and B. Sinha, 2014: GO5.0: the joint NERC-Met Office NEMO global ocean model for use in coupled and forced applications. Geosci. Model Dev., 7, 1069-1092, doi:10.5194/gmd-7-1069-2014. 

  20. Park, Y.-H., Y.-K. Hyun, S.-I. Heo, and H.-S. Ji, 2021: Assessment of the prediction performance of ensemble size-related in GloSea5 hindcast data. Atmosphere, 31, 511-523, doi:10.14191/Atmos.2021.31.5.511 (in Korean with English abstract). 

  21. Rae, J. G. L., H. T. Hewitt, A. B. Keen, J. K. Ridley, A. E. West, C. M. Harris, E. C. Hunke, and D. N. Walters, 2015: Development of the Global Sea Ice 6.0 CICE configuration for the Met Office Global Coupled model. Geosci. Model Dev., 8, 2221-2230, doi:10.5194/gmd8-2221-2015. 

  22. Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., Atmos., 108, 4407, doi:10.1029/2002JD002670. 

  23. Ridley, J. K., E. W. Blockley, A. B. Keen, J. G. L. Rae, A. E. West, and D. Schroeder, 2018: The sea ice model component of HadGEM3-GC3.1. Geosci. Model Dev., 11, 713-723, doi:10.5194/gmd-11-713-2018. 

  24. Scaife, A. A., and Coauthors, 2014: Skillful long-range prediction of European and North American winters. Geophys. Res. Lett., 41, 2514-2519, doi:10.1002/2014GL059637. 

  25. Seo, E., M.-I. Lee, J.-H. Jeong, H.-S. Kang, and D.-J. Won, 2016: Improvement of soil moisture initialization for a global seasonal forecast system. Atmosphere, 26, 35-45, doi:10.14191/Atmos.2016.26.1.035 (in Korean with English abstract). 

  26. Seo, E., M.-I., and Coauthors, 2019: Impact of soil moisture initialization on boreal summer subseasonal forecasts: mid-latitude surface air temperature and heat wave events. Climate Dyn., 52, 1695-1709, doi:10.1007/s00382-018-4221-4. 

  27. Storkey, D., and Coauthors, 2018: UK Global Ocean GO6 and GO7: a traceable hierarchy of model resolutions. Geosci. Model Dev., 11, 3187-3213, doi:10.5194/gmd11-3187-2018. 

  28. Waters, J., D. J. Lea, M. J. Martin, I. Mirouze, A. Weaver, and J. While, 2015: Implementing a variational data assimilation system in an operational 1/4 degree global ocean model. Q. J. R. Meteorol. Soc., 141, 333-349, doi:10.1002/qj.2388. 

  29. Walters, D., and Coauthors, 2017: The Met Office Unified Model Global Atmosphere 6.0/6.1 and JULES Global Land 6.0/6.1 configurations. Geosci. Model Dev., 10, 1487-1520, doi:10.5194/gmd-10-1487-2017. 

  30. Walters, D., and Coauthors, 2019: The Met Office Unified Model Global Atmosphere 7.0/7.1 and JULES Global Land 7.0 configurations. Geosci. Model Dev., 12, 1909-1963. 

  31. Williams, K. D., and Coauthors, 2018: The Met Office Global Coupled Model 3.0 and 3.1 (GC3.0 and GC3.1) Configurations. J. Adv. Model. Earth Sys., 10, 357-380, doi:10.1002/2017MS001115. 

  32. Yang, Y.-M., T. Shim, J.-Y. Moon, K.-Y. Kim, and Y.-K. Hyun, 2021: Diagnosing ISO Forecast from GloSea5 Using Dynamic-Oriented ISO Theory. Atmosphere, 12, 114, doi:10.3390/atmos12010114. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로