$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

도시 캐노피 층 기온과 상대습도의 일변화에 관한 수치 모의
Numerical Simulations of Diurnal Variations of Air Temperature and Relative Humidity in the Urban Canopy Layer 원문보기

대기 = Atmosphere, v.31 no.3, 2021년, pp.295 - 309  

박경주 (서울대학교 지구환경과학부) ,  한범순 (세명대학교 바이오환경공학과) ,  진한결 (서울대학교 지구환경과학부)

Abstract AI-Helper 아이콘AI-Helper

Diurnal variations of air temperature and relative humidity in the Urban Canopy Layer (UCL) of the Seoul metropolitan area are examined using the Weather Research and Forecasting model coupled with the Seoul National University Urban Canopy Model. The canopy layer air temperature is higher than 2-m ...

주제어

표/그림 (13)

참고문헌 (40)

  1. Arnfield, A. J., 2003: Two decades of urban climate research: A review of turbulence, exchanges of energy and water, and the urban heat island. Int. J. Climatol., 23, 1-26, doi:10.1002/joc.859. 

  2. Bang, J.-H., M.-K. Hwang, Y. Kim, J. Lee, and I. Oh, 2020: High-resolution meteorological simulation using WRF-UCM over a coastal industrial urban area. J. Environ. Sci. Int., 29, 45-54, doi:10.5322/JESI.2020.29.1.45 (in Korean with English abstract). 

  3. Bornstein, R. D., and D. S. Johnson, 1977: Urban-rural wind velocity difference. Atmos. Environ., 11, 597-604, doi:10.1016/0004-6981(77)90112-3. 

  4. Byon, J.-Y., Y.-J. Choi, and B.-G. Seo, 2010: Evaluation of urban weather forecast using WRF-UCM (Urban Canopy Model) over Seoul, Atmosphere, 20, 13-26 (in Korean with English abstract). 

  5. Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569-585, doi:10.1175/1520-0493(2001)129 2.0.CO;2. 

  6. Chen, F., and Coauthors, 2011: The integrated WRF/urban modelling system: Development, evaluation, and applications to urban environmental problems. Int. J. Climatol., 31, 273-288, doi:10.1002/joc.2158. 

  7. Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 3077-3107, doi:10.1175/1520-0469(1989)046 2.0.CO;2. 

  8. Fortuniak, K., K. Klysik, and J. Wibig, 2006: Urban-rural contrasts of meteorological parameters in Lodz. Theor. Appl. Climatol., 84, 91-101, doi:10.1007/s00704-005-0147-y. 

  9. Han, B.-S., J.-J. Baik, and K.-H. Kwak, 2019: A preliminary study of turbulent coherent structures and ozone air quality in Seoul using the WRF-CMAQ model at 50 m grid spacing. Atmos. Environ., 218, 117012, doi:10.1016/j.atmosenv.2019.117012. 

  10. Hong, S.-Y., and J.-O. J. Lim, 2006: The WRF singlemoment 6-class microphysics scheme (WSM6). J Korean Meteor. Soc., 42, 129-151. 

  11. Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 2318-2341, doi:10.1175/MWR3199.1. 

  12. Kain, J. S., 2004: The Kain-Fritsch convective parameterization: An update. J. Appl. Meteor. Climatol., 43, 170-181, doi:10.1175/1520-0450(2004)043 2.0.CO;2. 

  13. Kim, D.-J., D.-I. Lee, J.-J. Kim, M.-S. Park, and S.-H. Lee, 2020: Development of a building-scale meteorological prediction system including a realistic surface heating. Atmosphere, 11, 67, doi:10.3390/atmos11010067. 

  14. Kim, H.-O., and J.-M. Yeom, 2012: Effect of the urban land cover types on the surface temperature: Case study of Ilsan new city. Korean J. Remote Sens., 28, 203-214, doi:10.7780/kjrs.2012.28.2.203 (in Korean with English abstract). 

  15. Kusaka, H., H. Kondo, Y. Kikegawa, and F. Kimura, 2001: A simple single-layer urban canopy model for atmospheric models: Comparison with multi-layer and slab models. Bound.-Lay. Meteorol., 101, 329-358, doi:10.1023/A:1019207923078. 

  16. Lee, C.-B., J.-C. Kim, and Y.-J. Jang, 2012: A study of urban heat island in Chuncheon using WRF model and field measurements. J. Korean Soc. Atmos. Environ., 28, 119-130, doi:10.5572/KOSAE.2012.28.2.119 (in Korean with English abstract). 

  17. Lee, S.-H., and S.-U. Park, 2008: A vegetated urban canopy model for meteorological and environmental modelling. Bound.-Lay. Meteorol., 126, 73-102, doi: 10.1007/s10546-007-9221-6. 

  18. Lee, S.-H., and S.-T. Kim, 2015: Estimation of anthropogenic heat emission over Sou th Korea u sing a statistical regression method. Asia-Pac. J. Atmos. Sci., 51, 157-166, doi:10.1007/s13143-015-0065-6. 

  19. Lee, S.-H., H. Lee, S.-B. Park, J.-W. Woo, D.-I. Lee, and J.-J. Baik, 2016: Impacts of in-canyon vegetation and canyon aspect ratio on the thermal environment of street canyons: Numerical investigation using a coupled WRF-VUCM model. Q. J. R. Meteorol. Soc., 142, 2562-2578, doi:10.1002/qj.2847. 

  20. Lindberg, F., C. S. B. Grimmond, N. Yogeswaran, S. Kotthaus, and L. Allen, 2013: Impact of city changes and weather on anthropogenic heat flux in Europe 1995-2015. Urban Clim., 4, 1-15, doi:10.1016/j.uclim.2013.03.002. 

  21. Littlefair, P., 2001: Daylight, sunlight and solar gain in the urban environment. Sol. Energy, 70, 177-185, doi: 10.1016/S0038-092X(00)00099-2. 

  22. Liu, R., Z. Han, J. Wu, Y. Hu, and J. Li, 2017: The impacts of urban surface characteristics on radiation balance and meteorological variables in the boundary layer around Beijing in summertime. Atmos. Res., 197, 167-176, doi:10.1016/j.atmosres.2017.07.006. 

  23. Loughner, C. P., D. J. Allen, D.-L. Zhang, K. E. Pickering, R. R. Dickerson, and L. Landry, 2012: Roles of urban tree canopy and buildings in urban heat island effects: Parameterization and preliminary results. J. Appl. Meteorol. Climatol., 51, 1775-1793, doi:10.1175/JAMCD-11-0228.1. 

  24. Marciotto, E. R., A. P. Oliveira, S. R. Hanna, 2010: Modeling study of the aspect ratio influence on urban canopy energy fluxes with a modified wall-canyon energy budget scheme. Build. Environ., 45, 2497-2505, doi: 10.1016/j.buildenv.2010.05.012. 

  25. Masson, V., 2000: A physically-based scheme for the urban energy budget in atmospheric models. Bound.-Layer. Meteorol., 94, 357-397, doi:10.1023/A:1002463829265. 

  26. Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave, J. Geophys. Res. Atmos., 102, 16663-16682, doi: 10.1029/97JD00237. 

  27. Oke, T. R., 1982: The energetic basis of the urban heat island. Q. J. R. Meteorol. Soc., 108, 1-24, doi:10.1002/qj.49710845502. 

  28. Park, M.-S., and Coauthors, 2020: A building-block urban meteorological observation experiment (BBMEX) campaign in central commercial area in Seoul. Atmosphere, 11, 299, doi:10.3390/atmos11030299. 

  29. Ryu, Y.-H., and J.-J. Baik, 2012: Quantitative analysis of factors contributing to urban heat island intensity. J. Appl. Meteor. Climatol., 51, 842-854, doi:10.1175/JAMC-D-11-098.1. 

  30. Ryu, Y.-H., and J.-J. Baik, 2013: Daytime local circulations and their interactions in the Seoul metropolitan area. J. Appl. Meteor. Climatol., 52, 784-801, doi:10.1175/JAMC-D-12.0157.1. 

  31. Ryu, Y.-H., and J.-J. Baik, and S.-H. Lee, 2011: A new single-layer urban canopy model for use in mesoscale atmospheric models. J. Appl. Meteor. Climatol., 50, 1773-1794, doi:10.1175/2011JAMC2665.1. 

  32. Ryu, Y.-H., E. Bou-Zeid, Z.-H. Wang, and J. A. Smith, 2016: Realistic representation of trees in an urban canopy model. Bound.-Layer. Meteorol., 159, 193-220, doi: 10.1007/s10546-015-0120-y. 

  33. Schrijvers, P. J. C., H. J. J. Jonker, S. R. de Roode, and S. Kenjeres, 2020: On the daytime micro-climatic conditions inside an idealized 2D urban canyon. Build. Environ., 167, 106427, doi:10.1016/j.buildenv.2019.106427. 

  34. Shashua-Bar, L., Y. Tzamir, and M. E. Hoffman, 2004: Thermal effects of building geometry and spacing on the urban canopy layer microclimate in a hot-humid climate in summer. Int. J. Climatol., 24, 1729-1742, doi:10.1002/joc.1092. 

  35. Skamarock, W. C., and Coauthors, 2019: A Description of the Advanced Research WRF Model Version 4.1. NCAR Tech. Note NCAR/TN-556+STR, 145 pp, doi:10.5065/1dfh-6p97. 

  36. Theeuwes, N. E., G. J. Steenveld, R. J. Ronda, B. G. Heusinkyeld, L. W. A. van Hove, and A. A. M. Holtslag, 2014: Seasonal dependence of the urban heat island on the street canyon aspect ratio. Q. J. R. Meteorol. Soc., 140, 2197-2210, doi:10.1002/qj.2289. 

  37. UNDESA, 2019: World Urbanization Prospects: The 2018 revision. United Nations Department of Economic and Social Affairs, 103 pp [Available online at https://population.un.org/wup/Publications/Files/WUP2018-Report.pdf]. 

  38. Wang, Z.-H., E. Bou-Zeid, S. K. Au, and J. A. Smith, 2011: Analyzing the sensitivity of WRF's single-layer urban canopy model to parameter uncertainty using advanced Monte Carlo simulation. J. Appl. Meteor. Climatol., 50, 1795-1814, doi:10.1175/2011JAMC2685.1. 

  39. Yang, J., M. Menenti, E. S. Kravenhoff, Z. Wu, Q. Shi, and X. Ouyang, 2019: Parameterization of urban sensible heat flux from remotely sensed surface temperature: Effects of surface structure. Remote Sens., 11, 1347, doi:10.3390/rs11111347. 

  40. Yang, P., G. Ren, and W. Hou, 2017: Temporal-spatial patterns of relative hu midity and the u rban dryness island effect in Beijing city. J. Appl. Meteor. Climatol., 56, 2221-2237, doi:10.1175/JAMC-D-16-0338.1. 

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로