$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

수학교과 중심의 STEAM 수업 경험이 중학교 1학년 학생들의 수학적 모델링 능력에 미치는 영향
The Effects of Mathematics-Centered STEAM Program on Mathematical Modeling Ability of First Grade Students in Middle School 원문보기

Journal of the Korean Society of Mathematical Education. Series E: Communications of Mathematical Education, v.35 no.3, 2021년, pp.295 - 322  

김미경 (단국대학교 교육대학원) ,  한혜숙 (단국대학교)

초록
AI-Helper 아이콘AI-Helper

본 연구는 수학교과 중심의 STEAM 수업 경험이 중학교 1학년 학생들의 수학적 모델링 능력에 미치는 영향을 파악하기 위하여 대학 연계 자유학기제 융합수학탐구 수업에 신청한 49명의 학생들을 대상으로 단일집단 사전-사후 검사 설계를 통해 한 학기동안 이루어졌다. 본 연구의 주요 결과는 다음과 같다. 첫째, 사전, 사후 수학적 모델링 능력 검사 결과에 의하면, 사전 검사에 비해서 사후 수학적 모델링 검사의 평균 점수가 향상되었고, 사전, 사후 검사 간에 통계적으로 유의미한 차이가 있는 것으로 나타나 본 연구에서 제공한 수학교과 중심의 STEAM 수업 경험이 중학교 1학년 학생들의 수학적 모델링 능력을 향상시키는데 긍정적인 영향을 준다는 것을 확인하였다. 둘째, 각 문항별 분석 결과에 의하면 STEAM 수업 경험은 학생들의 창의적 사고 및 열린 사고를 요구하는 개방성이 높은 수학적 모델링 문항의 해결에 더욱 효과적인 것으로 나타났다. 셋째, 하위문항별 학생 응답 내용 분석 결과에 의하면, STEAM 수업 경험이 특히 학생들의 수학적 모델 구성 및 결과에 대한 타당성 검토 과정을 더욱 활성화시킨 것으로 나타났다.

Abstract AI-Helper 아이콘AI-Helper

This study was conducted for one semester through one group pretest-posttest design with 49 first-year middle school students to explore the effects of mathematics-centered STEAM class experiences on students' mathematical modeling abilities. The main results of this study are as follows: First, the...

주제어

표/그림 (28)

참고문헌 (38)

  1. Kang, O. K. (2010). A Study on a modelling process for fitting mathematical modeling. The Journal of Educational Research in Mathematics, 20(1), 73-84. 

  2. Ko, C., & Oh, Y. (2015). The effects of mathematical modeling activities on mathematical problem solving and mathematical dispositions. Journal of Elementary Mathematics Education in Korea, 19(3), 347-370. 

  3. Ministry of Education. (2015). Mathematics curriculum(Proclamation of the Ministry of Education #2015-75 [Annex 8]). 

  4. Kim, M. K., Hong, J. Y., & Kim, H. W. (2010). A study on development of problem contexts for an application to mathematical modeling. The Mathematical Education, 49(3), 313-328. 

  5. Park, S. H., Shin, J. H., & Lee, S. J. (2014). A case study on a model refinement in mathematical modeling process. Journal of the Korean School Mathematics, 17(4), 657-677. 

  6. Park, J. H. (2017). Fostering mathematical creativity by mathematical modeling. The Journal of Educational Research in Mathematics, 27(1), 69-88. 

  7. Park, H., Kim, Y., Noh, S. G., Lee, J., Jeong, J. S., Choi, Y., Han, H., & Baek, Y. S. (2021). Components of 4C-STEAM education and a checklist for the instructional design. Journal of Learner-Centered Curriculum and Instruction, 12(4), 533-557. 

  8. Son, H. C. (2006). Mathematical discovery and justification in modeling activities using spreadsheet. Unpublished doctoral dissertation, Korea National University of Education, Chung-Buk, Korea. 

  9. An, J. S. (2012). Impact on improve Student's learning ability in instruction using mathematical modeling teaching materials of function units. Journal of the Korean School Mathematics, 15(4), 747-770. 

  10. Yang, Y. J., & Yoo, M. H. (2017). The effect of mathematics-based STEAM program using big data on the creative problem-solving abilities, mathematics career orientation and STEAM core competencies of middle school gifted students. Journal of Gifted/Talented Education, 27(4), 607-629. 

  11. Oh, Y., & Park, J. (2019). Exploring the task types of mathematical modeling applied to elementary school. The Journal of Korea elementary education, 30(1), 87-99. 

  12. Yun, S. A. (2018). A development and applications of teaching-learning materials for characterization high school students by using mathematical modeling. Unpublished master's thesis. Korea National University of Education, Chung-Buk, Korea. 

  13. Lee, M. S., Kim, M. S., & Moon, E. S. (2013). The effect of STEAM instruction on math creative problem solving ability and creative attitude in elementary math gifted students. The Journal of the Korean Society for the Gifted and Talented, 12(3), 75-94. 

  14. Lee, E. K. (2018). The effects of math-based convergence program using real life examples on the mathematical personality and creative problem solving ability of elementary gifted students. Unpublished master's thesis. Ajou University, suwon, Korea. 

  15. Jung, H. Y., Lee, K. H., Baek, D. H., Jung, J. H., & Lim, K. S. (2018). Design for Subject's Task Based on the Mathematical Modeling Perspective. School Mathematics, 20(1), 149-169. 

  16. Cho, W., & Kwon, O. N. (2002). Development of performance tasks and specific assessment rubric using mathematical modeling in the function area of middle school. J. Korea Soc. Math. Ed. Ser. E: Communications of Mathematical Education, 14, 349-370. 

  17. Choi, K. (2017). A study on literature review of mathematical modeling in mathematical competencies perspective. Journal of the Korean School Mathematics, 20(2), 187-210. 

  18. Choi, J. W., Park, Y. S., & Lee, Y. J. (2015). The effects of STEAM education using E-textiles for improving creative problem solving of elementary school students. Korean Journal of Teacher Education, 31(3), 105-119. 

  19. Choi, H. S., & Han, H. (2018). The effects of mathematical modeling based instruction on mathematical problem-posing ability of first-year middle school students. Journal of Learner-Centered Curriculum and Instruction, 18(14), 755-782. 

  20. Han, S. Y. (2019). Pre-service mathematics teachers' perceptions on mathematical modeling and its educational use, The Mathematical Education, 58(3), 443-458. 

  21. Han, H. (2017). The effects of mathematics-centered STEAM program on middle school students' interest in STEM career and integrated problem solving ability. J. Korea Soc. Math. Ed. Ser. E: Communications of Mathematical Education, 31(1), 125-147. 

  22. Hong, J. Y., & Kim. M. K. (2011). A study on abstraction and understandings in children's learning of surface area with mathematical modeling perspective. Journal of the Korean School Mathematics, 14(1), 43-64. 

  23. Hwang, H. J. (2007). A study of understanding mathematical modelling. School Mathematics, 9(1), 65-97. 

  24. Hwang, H. J., & Min A. (2018). An Investigation on the Understanding of the Mathematical Modelling Based on the Results of Domestic Articles since 2007. J. Korea Soc. Math. Ed. Ser. E: Communications of Mathematical Education, 32(2), 225-244. 

  25. Bleich, L., Ledford, S., Hawley, C., Polly, D., & Orrill, C. (2006). An analysis of the use of graphical representation in participants' solutions. The Mathematics Educator, 16(1), 22-34. 

  26. Blum, W. (1996). Anwendungsbezuge im mathematikumterricht-Trends und perspectiven. In G. Kadunz, H. Kautschitsch, G. Ossimitz, & E. Schneider (Eds.), Trends und perspektiven(pp.15-38). Wien, Austria: Holder-Pichler-Tempsky. 

  27. Blum, W., & Borromeo Ferri, R. (2009). Mathematical Modelling: Can It Be Taught And Learnt? Journal of Mathematical Modelling and Application, 1(1), 45-58 

  28. Blum, W., & Leiss, D. (2007). How Do Students and Teachers Deal With Modeling Problems? In C. R. Haines, P. Galbraith, W. Blum, & S. Khan (Eds.), Mathematical Modeling (ICTMA-12): Education, Engineering and Economics (pp. 222-231). Chichester: Horwood Publishing. 

  29. Blum, W., & Niss, M. (1991). Applied mathematical problem solving, modelling, applications, and links to other subjects-state, trends and issues in mathematics instruction. Educational Studies in Mathematics, 22(1), 37-68 

  30. Borromeo Ferri, R. (2006). Theoretical and empirical differentiations of phases in the modelling process. Zentralblatt fur Didaktik der Mathematik, 38(2), 86-95 

  31. Common Core State Standards Initiative. (2010). Common Core State Standards for Mathematics (CCSSM). Washington, DC: National Governors Association Center for Best Practices and the Council of Chief State School Officers. from http://www.corestandards.org/wp-content/uploads/Math_Standards.pdf 

  32. Cukrowicz, J., & Zimmermann, B. (2000). MatheNetz 5-11. Braunschweig, Germany: Westermann. 

  33. Galbraith P., & Clatworthy, N. (1990). Beyond standard models-meeting the challenge of modeling. Educational Studies in Mathematics, 21(2), 137-163. 

  34. Greefrath, G. (2015). Problem solving methods for mathematical modeling. In G. Stillman, W. Blum, & M. S. Biembengut (Eds.), Mathematical modelling in education research and practice. Cultural, social and cognitive influences ICTMA 16 (pp. 173-183). Dordrecht, Heidelberg, London, NY: Springer. 

  35. Lesh, R., & Doerr, H. M. (2003). Foundations of a models and modeling perspective on mathematics teaching, learning, and problem solving. In R. Lesh & H. M. Doerr (Eds.), Beyond constructivism: Models and modeling perspectives on mathematics problem solving, learning and teaching (pp. 3-34). Mahwah, NJ: Lawrence Erlbaum. 

  36. Mousoulides, N., Christou, C., & Sriraman, B. (2008). A modeling perspective on the teaching and learning of mathematical problem solving. Mathematical Thinking and Learning, 10, 293-304. 

  37. Sokolowski, A. (2015). The effect of math modeling on student's emerging understanding. IAFOR Journal of Education, 3(2). https://doi.org/10.22492/ije.3.2.09 

  38. Swan, M., Turner, R., Yoon, C., & Muller, E.(2007). The roles of modelling in learning mathematics, In W. Blum, P. L. Galbraith, H. W. Henn, & M. Niss (Eds.). Modelling and Applications in Mathematics Education- The 14th ICMI Study (pp. 275-284). NY: Springer. 

저자의 다른 논문 :

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로