최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Journal of KIBIM = 한국BIM학회논문집, v.11 no.3, 2021년, pp.45 - 54
(명지대학교 토목환경공학과) , (명지대학교 토목환경공학과) , 이용주 (명지대학교 토목환경공학과) , 박만우 (명지대학교 토목환경공학과) , 송은석 (한국도로공사 스마트건설사업단)
The augmented reality (AR) has recently became an attractive technology in construction industry, which can play a critical role in realizing smart construction concepts. The AR has a great potential to help construction workers access digitalized information about design and construction more flexi...
Asadi, K., Chen, P., Han, K., Wu, T., Lobaton, E. (2019). Real-time Scene Segmentation Using a Light Deep Neural Network Architecture for Autonomous Robot Navigation on Construction Sites, The 2019 ASCE International Conference on Computing in Civil Engineering, arXiv:1901.08630 [cs.RO], https://arxiv.org/abs/1901.08630.
Behringer, R., Klinker, G., Mizell, D. (1999). Augmented Reality: Placing Artificial Objects in Real Scenes, CRC Press.
Bochkovskiy, A., Wang, C.-Y., Liao, H.-Y. M. (2020). YOLOv4: Optimal Speed and Accu racy of Object Detection, Computer Vision and Pattern Recognition, arXiv:2004.10934 [cs.CV], https://arxiv.org/abs/2004.10934.
Christine, B. (2019). Bentley's SYNCHRO XR and Microsoft HoloLens 2 bring the benefits of mixed reality to construction sites, https://www.bentley.com/ko/about-us/news/2019/february/24/synchro-xr-with-hololens-2-release (May. 21. 2021).
Elsbach, K. D., Kramer, R. M. (2015). Handbook of Qualitative Organizational Research: Innovative Pathways and Methods, Routledge.
Fang, Q., Li, H., Luo, X., Ding, L., Rose, T. M., An, W., Yu, Y. (2018). A deep learning-based method for detecting non-certified work on construction sites, Advanced Engineering Informatics, 35, pp. 56-68.
Fang, W., Ding, L., Zhong, B., Love, P. E.D., Luo, H. (2018). Automated detection of workers and heavy equipment on construction sites: A convolutional neural network approach, Advanced Engineering Informatics, 37, pp. 139-149.
Fang, Y., Ding, L., Luo, H., Love, P. E.D. (2018). Falls from heights: A computer vision-based approach for safety harness detection, Automation in Construction, 91, pp. 53-61.
Girshick, R., Donahue, J., Darrell, T., Malik., J. (2014). Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2014, pp. 580-587.
Ippolito, B. (2018). simplejson - JSON encoder and decoder, https://simplejson.readthedocs.io/en/latest/ (May. 06. 2021).
Jiang, Z., Zhao, L., Li, S., Jia, Y. (2020). Real-time object detection method based on improved YOLOv4-tiny, Computer Vision and Pattern Recognition, arXiv:2011.04244 [cs.CV], https://arxiv.org/abs/2011.04244.
Jiao, Y., Zhang, S., Li, Y., Wang, Y., Yang, B. (2013). Towards cloud Augmented Reality for construction application by BIM and SNS integration, Automation in Construction, 33, pp. 37-47.
Kim, H., Bang, S., Jeong, H., Ham, Y., Kim, H. (2018). Analyzing context and productivity of tunnel earthmoving processes using imaging and simulation, Automation in Construction, 92, pp. 188-198.
Kim, J., Sung, J.-Y., Park, S. (2020). Comparison of Faster-RCNN, YOLO, and SSD for Real-Time Vehicle Type Recognition, 2020 IEEE International Conference on Consumer Electronics - Asia (ICCE-Asia), 2020, pp. 1-4.
Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., Perona, P., Ramanan, D., Zitnick, C. L., Dollar, P. (2014). Microsoft COCO: Common Objects in Context, ECCV 2014: Computer Vision - ECCV 2014, pp. 740-755.
Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C. Y., Berg, A. C. (2016). SSD: Single Shot MultiBox Detector, Computer Vision - ECCV 2016, pp. 21-37.
Luo, H., Xiong, C., Fang, W., Love, P. E.D., Zhang, B., Ouyang, X. (2018). Convolutional neural networks: Computer vision-based workforce activity assessment in construction, Automation in Construction, 94, pp. 282-289.
Microsoft. (2019). Introducing MRTK for Unity, https://docs.microsoft.com/ko-kr/windows/mixed-reality/develop/unity/mrtk-getting-started (May. 04. 2021).
Redmon, J., Divvala, S., Girshick, S., Farhadi, A. (2016). You Only Look Once: Unified, Real-Time Object Detection, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 779-788.
Ren, S., He, K., Girshick, R., Sun, Jian. (2016). Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks, IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(6), pp. 1137-1149.
Sredojev, B., Samardzija, D., Posarac, D. (2015). WebRTC technology overview and signaling solution design and implementation, 38th International Convention on Information and Communication Technology Electronics and Microelectronics (MIPRO), 2015, pp. 1006-1009.
vGis. (2021). BIM and GIS Data In Augmented Reality, https://www.vgis.io/esri-augmented-reality-gis-ar-for-utilities-municipalities-locate-and-municipal-service-companies/ (May. 22. 2021).
Xiao, B., Kang, S.-C. (2021). Development of an Image Data Set of Construction Machines for Deep Learning Object Detection, Journal of Computing in Civil Engineering, 35(2), https://doi.org/10.1061/(ASCE)CP.1943-5487.0000945.
Yang, Z., Yuan, Y., Zhang, M., Zhao, X., Zhang, Y., Tian, B. (2019). Safety Distance Identification for Crane Drivers Based on Mask R-CNN, Sensors, 19(12), https://doi.org/10.3390/s19122789.
Zollmann, S., Hoppe, C., Kluckner, S., Poglitsch, C., Bischof, H., Reitmayr, G. (2014). Augmented Reality for Construction Site Monitoring and Documentation, Proceedings of the IEEE, 102(2), pp. 137-154.
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문
※ AI-Helper는 부적절한 답변을 할 수 있습니다.