$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

40 wt% Ni 촉매에서 바이오가스 중 CO2로부터 메탄제조에 관한 연구: Commercial Catalyst와의 특성 비교분석
A Study on the Synthesis of CH4 from CO2 of Biogas Using 40 wt% Ni-Mg Catalyst: Characteristic Comparison of Commercial Catalyst and 40 wt% Ni Catalyt 원문보기

한국수소 및 신에너지학회 논문집 = Transactions of the Korean Hydrogen and New Energy Society, v.32 no.5, 2021년, pp.388 - 400  

한단비 (수원대학교 환경에너지공학과) ,  백영순 (수원대학교 환경에너지공학과)

Abstract AI-Helper 아이콘AI-Helper

Power to gas (P2G) is one of the energy storage technologies that can increase the storage period and storage capacity compared to the existing battery type. One of P2G technology produces hydrogen by decomposing water from renewable energy (electricity) and the other produces CH4 by reacting hydrog...

주제어

참고문헌 (39)

  1. G. Wojciech, Z. Witold, S. Grzegorz, S. Andrzej, and K. Agnieszka, "Nickel catalysts supported on silica microspheres for CO2 methanation", Microporous and Mesoporous Materials, Vol. 272, 2018, pp. 79-91, doi: https://doi.org/10.1016/j.micromeso.2018.06.022. 

  2. Z. Guojie, L. Jiwei, X. Ying, and S. Yinghui, "A review of CH4-CO2 reforming to synthesis gasover Ni-based catalysts in recent years (2010-2017)", International Journal of Hydrogen Energy, Vol. 43, No. 32, 2018, pp. 15030-15054, doi: https://doi.org/10.1016/j.ijhydene.2018.06.091. 

  3. L. Wenhui, L. Yi, M. Minchen, D. Fanshu, L. Zhongmin, G. Xinwen, and S. Chunshan, "Organic acid-assisted preparation of highly dispersed Co/ZrO2 catalysts with superior activity for CO2 methanation", Applied Catalysis B: Environmental, Vol. 254, 2019, pp. 531-540, doi: https://doi.org/10.1016/j.apcatb.2019.05.028. 

  4. B. Zhoufeng, M. C. Yi, Y. Yang, and K. Sibudjing, "Morphology dependence of catalytic properties of Ni/CeO2 for CO2 methanation: a kinetic and mechanism study", Catalysis Today, Vol. 347, 2020, pp. 31-38, doi: https://doi.org/10.1016/j.cattod.2018.04.067. 

  5. E. E. Benson, C. P. Kubiak, A. J. Sathrum, and J. M. Smieja, "Electrocatalytic and homogeneous approaches to conversion of CO2 to liquid fuels" Chem. Soc. Rev. Vol. 38, 2009, pp. 89-99, doi: https://doi.org/10.1039/B804323J. 

  6. S. Alfredo, F. Jose, A. Armando, and C. Juan, "Participation of surface bicarbonate, formate and methoxy species in the carbon dioxide methanation catalyzed by ZrO2-supported Ni", Applied Catalysis B: Environmental, Vol. 218, 2017, pp. 611-620, doi: https://doi.org/10.1016/j.apcatb.2017.06.063. 

  7. S. G. Edwin C. Narendraraj, V. K. Ivan, G. Aida, V. Enrique, S. Antonio, and N. Raveendran, "Highly efficient nickel-niobia composite catalysts for hydrogenation of CO2 to methane", Chemical Engineering Science, Vol. 194, 2019, pp. 2-9, doi: https://doi.org/10.1016/j.ces.2018.08.038. 

  8. "InfoMine: Mining Intelligence & Technology". 

  9. J. B. Powell and S. H. Langer, "Low-temperature methanation and fischer-tropsch activity over supported ruthenium, nickel, and cobalt catalysts", J Catal, Vol. 94, 1985, pp. 556-569, doi: https://doi.org/10.1016/0021-9517(85)90222-2. 

  10. E. Kok , J. Scott, N. Cant and D. Trimm, "The impact of ruthenium, lanthanum and activation conditions on the methanation activity of alumina-supported cobalt catalysts" Catal Today, Vol. 164, No. 1, 2011, pp. 297-301, doi: https://doi.org/10.1016/j.cattod.2010.11.011. 

  11. G. H. Watson, "Methanation catalysts", IEA Coal Research, 1980. 

  12. P. Gerard and A. Beenackers, "Kinetics and selectivity of fischer-tropsch synthesis: a literature review', Catal Rev - Sci Eng, Vol. 41, No. 3-4, 1999, pp. 255-318, doi: https://doi.org/10.1081/CR-100101170. 

  13. G. Iglesias, C. de Vries, M. Claeys, and G. Schaub, "Chemical energy storage in gaseous hydrocarbons via iron Fischer-Tropsch synthesis from H2/CO2 -kinetics, selectivity and process considerations", Catal Today, Vol. 242, 2015, pp. 184-192, doi: https://doi.org/10.1016/j.cattod.2014.05.020. 

  14. G. Mills and F. Steffgen, "Catalytic methanation", Catal Rev, Vol. 8, No. 1, 1974, pp. 159-210, doi: https://doi.org/10.1080/01614947408071860. 

  15. J. Gao, Q. Liu , F. Gu, B. Liu, Z. Zhong, and F. Su, "Recent advances in methanation catalysts for the production of synthetic natural gas", RSC Adv, Vol. 29, 2015, pp. 22759-22776, doi: https://doi.org/10.1039/C4RA16114A. 

  16. M. Fan, K. Miao, J. Lin, H. Zhang, and D. Liao. "Mg-Al oxide supported Ni catalysts with enhanced stability for efficient synthetic natural gas from syngas", Appl Surf Sci, Vol. 307, 2014, pp. 682-688, doi: https://doi.org/10.1016/j.apsusc.2014.04.098. 

  17. B. Wang, Y. Yao, M. Jiang, Z. Li, X. Ma, S. Qin, and Q. Sun, "Effect of cobalt and its adding sequence on the catalytic performance of MoO3/Al2O3 toward sulfur-resistant methanation", J Energy Chem, Vol. 23, No. 1, 2014, pp. 35-42, doi: https://doi.org/10.1016/S2095-4956(14)60115-7. 

  18. H. Qin, C. Guo, Y. Wu, and J. Zhang, "Effect of La2O3 promoter on NiO/Al2O3 catalyst in CO methanation", Korean J Chem Eng, Vol. 31, 2014, pp. 1168-1173, doi: https://doi.org/10.1007/s11814-014-0013-7. 

  19. Q. Liu, F. Gu, X. Lu, Y. Liu, H. Li, Z. Zhong, G. Xu, and F. Su, "Enhanced catalytic performances of Ni/Al2O3 catalyst via addition of V2O3 for CO methanation" Appl Catal A, Vol. 488, 2014, pp. 37-47, doi: https://doi.org/10.1016/j.apcata.2014.09.028. 

  20. H. Liu, X. Zou, X. Wang, X. Lu, and W. Ding, "Effect of CeO2 addition on Ni/Al2O3 catalysts for methanation of carbon dioxide with hydrogen", J Nat Gas Chem, Vol. 21, No. 6, 2012, pp. 703-707, doi: https://doi.org/10.1016/S1003-9953(11)60422-2. 

  21. C. Campbell and D. Goodman, "A surface science investigation of the role of potassium promoters in nickel catalysts for CO hydrogenation", Surf Sci, Vol. 123, 1982, pp. 413-426, doi: https://doi.org/10.1016/0039-6028(82)90337-5. 

  22. S. Xiong, X. Jinghua, L. Binglian, D. Hongmin, H. Baolin, and H. Yanqiang, "Catalytic carbon dioxide hydrogenation to methane: a review of recent studies", Journal of energy chemistry, Vol. 25, No. 4, 2016, pp. 553-565, doi: https://doi.org/10.1016/j.jechem.2016.03.009. 

  23. C. Isabelle, B. Alain, C. Albin, T. Sebastien, and R. Anne-Cecile, "Carbon dioxide methanation kinetic model on a commercial Ni/Al2O3 catalyst", Journal of CO2 Utilization, Vol. 34, 2019, pp. 256-265, doi: https://doi.org/10.1016/j.jcou.2019.05.030. 

  24. H. Feiyang, T. Sai, L. Kun, C. Cheng-Meng, S. Fang-Yuan, Z. Jian, H. Zhang, W. Xuewen, F. Gang, and Z. Rongbin, "Reduced graphene oxide supported Ni-Ce catalysts for CO2 methanation: the support and ceria promotion effects", Journal of CO2 Utilization, Vol. 34, 2019, pp. 676-687, doi: https://doi.org/10.1016/j.jcou.2019.08.020. 

  25. J. Haoxi, G. Qiang, W. Shutian, C. Yife, and .Z Minhua, "The synergistic effect of Pd NPs and UiO-66 for enhanced activity of carbon dioxide methanation", Journal of CO2 Utilization, Vol. 31, 2019, pp.167-172, doi: https://doi.org/10.1016/j.jcou.2019.03.011. 

  26. O. Zhiliang, Q. Changlei, N. Juntian, Z. Lihui, and R. Jingyu, "A comprehensive DFT study of CO2 catalytic conversion by H2 over Pt-doped Ni catalysts", Journal of hydrogen energy, Vol. 44, No. 2, 2019, pp. 819-834, doi: https://doi.org/10.1016/j.ijhydene.2018.11.008. 

  27. J. Y. Lim, J. McGregor, A. J. Sederman, and J. S. Dennis, "Kinetic studies of CO2 methanation over a Ni/γ-Al2O3 catalyst using a batch reactor", Chemical Engineering Science, Vol. 141, 2016, pp. 28-45, doi: https://doi.org/10.1016/j.ces.2015.10.026. 

  28. A. Westermann, B. Azambre, M. C. Bacariza, I. Graca, M. F. Ribeiro, J. M. Lopes, and C. Henriques, "Insight into CO2 methanation mechanism over Ni-USY zeolites: anoperandoIR study", Applied Catalysis B: Environmental, Vol. 174-175, 2015, pp.120-125, doi: https://doi.org/10.1016/j.apcatb.2015.02.026. 

  29. C.V. Miguel, A. Mendes, and L.M. Madeira, "Intrinsic kinetics of CO2 methanation over an industrial nickel-based catalyst", Journal of CO2 Utilization, Vol. 25, 2018, pp. 128-136, doi: https://doi.org/10.1016/j.jcou.2018.03.011. 

  30. L. Yanping, Z. Hui, Z. Lianhong, and Z. Han, "Bimetallic NiePd/SBA-15 alloy as an effectivecatalyst for selective hydrogenation of CO2 to methane", International Journal of Hydrogen Energy, Vol. 44, No. 26, 2019, pp. 13354-13363, doi: https://doi.org/10.1016/j.ijhydene.2019.03.276. 

  31. W. Li, H. Wang, Z. Jiang, J. Zhu, Z. Liu, X. Guo, and C. Song, "A short review of recent advances in CO2 hydrogenation to hydrocarbons over heterogeneous catalysts", RSC Adv, Vol. 14, 2018, pp. 7651-7669, Retrieved from https://pubs.rsc.org/en/content/articlelanding/2018/ra/c7ra13546g. 

  32. W. Li, H.Wang, Z. Jiang, J. Zhu, Z. Liu, X. Guo, and C. Song, "A short review of recent advances in CO2 hydrogenation to hydrocarbons over heterogeneous catalysts", RSC Adv, Vol. 14, 2018, pp. 7651-7669, Retrieved from https://pubs.rsc.org/en/content/articlelanding/2018/ra/c7ra13546g. 

  33. D. B. Han, Y. J. kim, H. S. Byun, W. J. Cho, and Y. S. Baek, "CO2 Methanation of Biogas over 20 wt% Ni-Mg-Al Catalyst: on the Effect of N2, CH4, and O2 on CO2 Conversion Rate", Catalysts, Vol. 10, No. 10, 2020, pp. 1201, doi: https://doi.org/10.3390/catal10101201. 

  34. M. Benjamin, W.P. Carvalho, M. Stefan, K. Wolfgang, and G. Jan-Dierk, "Methanation of CO2: structural response of a Ni-based catalyst underfluctuating reaction conditions unraveled byoperandospectroscopy", Journal of Catalysis, Vol. 327, 2015, pp.48-53, doi: https://doi.org/10.1016/j.jcat.2015.04.006. 

  35. M. J. Mohammad, A. N. Mohamad, and T. W. Paul, "Parametric study of CO2 methanation for synthetic natural gas production", Energy technology, Vol. 7, No. 11, 2019, pp. 1990795, doi: https://doi.org/10.1002/ente.201900795. 

  36. X, Jia, X. Zhang, N. Rui, X. Hu, and C. J. Liu, "Structural effect of Ni/ZrO2 catalyst on CO2 methanation with enhanced activity", Applied Catalysis B: Environmental, Vol. 244, 2019, pp. 159-169, doi: https://doi.org/10.1016/j.apcatb.2018.11.024. 

  37. L. Jurgensen, E.A Ehimen, J. Born, and J. B. Holm-Nielsen, "Dynamic biogas upgrading based on the sabatier process: thermodynamic and dynamic process simulation", Bioresour. Technol, Vol. 178, 2015, pp. 323-329, doi: https://doi.org/10.1016/j.biortech.2014.10.069. 

  38. V. M. Vlasenko, G. E. Yuzefovich, and M. T. Rusov, "Kinet. Catal.", USER, Vol. 6, 1965, pp. 938. 

  39. J. Gao, Y. Wang, Y. Ping, D. Hu, G. Xu, F. Gu, and F. Su, "A thermodynamic analysis of methanation reactions of carbon oxides for the production of synthetic natural gas", RSC Adv, Vol. 2, 2012, pp. 2358-2368, doi: https://doi.org/10.1039/C2RA00632D. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

FREE

Free Access. 출판사/학술단체 등이 허락한 무료 공개 사이트를 통해 자유로운 이용이 가능한 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로