$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

수용체 모델(PMF)를 이용한 서울시 대기 중 VOCs의 배출원에 따른 위해성평가
Health Risk Assessment with Source Apportionment of Ambient Volatile Organic Compounds in Seoul by Positive Matrix Factorization 원문보기

韓國環境保健學會誌 = Journal of environmental health sciences, v.47 no.5, 2021년, pp.384 - 397  

권승미 (서경대학교 환경화학공학과) ,  최유리 (서울특별시보건환경연구원) ,  박명규 (서울특별시보건환경연구원) ,  이호준 (서울특별시보건환경연구원) ,  김광래 (서울특별시보건환경연구원) ,  유승성 (서울특별시보건환경연구원) ,  조석주 (서울특별시보건환경연구원) ,  신진호 (서울특별시보건환경연구원) ,  신용승 (서울특별시보건환경연구원) ,  이철민 (서경대학교 환경화학공학과)

Abstract AI-Helper 아이콘AI-Helper

Background: With volatile organic compounds (VOCs) containing aromatic and halogenated hydrocarbons such as benzene, toluene, and xylene that can adversely affect the respiratory and cardiovascular systems when a certain concentration is reached, it is important to accurately evaluate the source and...

주제어

표/그림 (15)

참고문헌 (39)

  1. Kulmala M, Vehkamaki H, Petaja T, Dal Maso M, Lauri A, Kerminen VM, et al. Formation and growth rates of ultrafine atmospheric particles: a review of observations. J Aerosol Sci. 2004; 35(2): 143-176. 

  2. Seinfeld JH, Pandis SN. Atmospheric Chemistry and Physics from Air Pollution to Climate Change, 2nd ed. New York: John Wiley & Sons; 2012. p.26. 

  3. Hajizadeh Y, Teiri H, Nazmara S, Parseh I. Environmental and biological monitoring of exposures to VOCs in a petrochemical complex in Iran. Environ Sci Pollut Res Int. 2018; 25(7): 6656-6667. 

  4. Shuai J, Kim S, Ryu H, Park J, Lee CK, Kim GB, et al. Health risk assessment of volatile organic compounds exposure near Daegu dyeing industrial complex in South Korea. BMC Public Health. 2018; 18(1): 528. 

  5. Ministry of Environment. Guidelines for Installation and Operation of Air Pollution Monitoring Networks. Sejong: Ministry of Environment; 2006. 

  6. Han JS, Hong YD, Shin SA, Lee SU, Lee SJ. Receptor model(CMB) and source apportionments of VOCs in Seoul metropolitan area. J Environ Impact Assess. 2005; 14(4): 227-235. 

  7. Kim YP. Validation of the emission inventory of volatile organic compounds in Seoul. Part Aerosol Res. 2009; 5(3): 139-148. 

  8. National Air Pollutants Emission. Pollutant emissions in 2017. National Air Emission Inventory and Research Center. 2020. 

  9. Choi YJ. Identification and Apportionment of VOC Emission Sources in Seoul. Seoul: Seoul Development Institute; 2012. 

  10. Kang MK. Source apportionment of organic carbons in PM2.5 using the positive matrix factorization model: characterization of secondary organic aerosols at Seoul, Korea using SOA tracers [dissertation]. [Seoul]: Ewha Womans University; 2021 

  11. Heo J, Kim C, Min Y, Kim H, Sung Y, Kim J, et al. Source apportionment of PM10 at Pyeongtaek area using positive matrix factorization (PMF) model. J Korean Soc Atmos Environ. 2018; 36(6): 849-864. 

  12. U.S. Environmental Protection Agency. Technical assistance document for sampling and analysis of ozone precursors for the photochemical assessment monitoring stations program- revision 2. Research Triangle Park: U.S. Environmental Protection Agency; 2019. 

  13. National Institute of Environmental Research. National Academy of Environmental Sciences Notice No. 2020-30, Air Pollution Process Test Criteria for Ozone Precursors in Environmental Atmosphere-Automatic Measurement Method (ES 01805.1). Incheon: National Institute of Environmental Research; 2020. 

  14. Choi W, Cho Y, Jang H, Kim C, Kim T. Analysis of VOCs characterization in Gumi industrial complex by positive matrix factorzation. Korean J Odor Res Eng. 2010; 9(2): 89-99. 

  15. Chueinta W, Hopke PK, Paatero P. Investigation of sources of atmospheric aerosol at urban and suburban residential areas in Thailand by positive matrix factorization. Atmos Environ. 2000; 34(20): 3319-3329. 

  16. Paatero P, Hopke PK. Discarding or downweighting high-noise variables in factor analytic models. Anal Chim Acta. 2003; 490(1-2): 277-289. 

  17. Kim S, Kim K, Hyun S, Kim J, Kim M, Kim B, et al. Chemical composition and source apportionment of PM2.5 in Jeju city in 2017. J Korean Soc Environ Anal. 2018; 21(2): 61-70. 

  18. Derwent RG, Jenkin ME, Saunders SM. Photochemical ozone creation potentials for a large number of reactive hydrocarbons under European conditions. Atmos Environ. 1996; 30(2): 181-199. 

  19. Leggett S. Forecast distributions of species and their atmospheric reactivities for the U.K. VOC emission inventory. Atmos Environ. 1996; 30(2): 215-226. 

  20. Derwent RG, Jenkin ME, Saunders SM, Pilling MJ. Photochemical ozone creation potentials for organic compounds in northwest Europe calculated with a master chemical mechanism. Atmos Environ. 1998; 32(14-15): 2429-2441. 

  21. Derwent RG, Jenkin ME, Passant NR, Pilling MJ. Reactivity-based https://e-jehs.org strategies for photochemical ozone control in Europe. Environ Sci Policy. 2007; 10(5): 445-453. 

  22. National Institute of Environmental Research. Regulations on methods of care for evaluation of chemicals No. 2021-13. Incheon: National Institute of Environmental Research; 2021. 

  23. Health Canada. Federal Contaminated Site Risk Assessment in Canada Part I: Guidance on Human Health Preliminary Quantitative Risk Assessment (PQRA). Ottawa: Health Canada; 2004. 

  24. Kindzierski W, Jin J, Gamal El-Din M. Plain Language Explanation of Human Health Risk Assessment. Edmonton: Oil Sands Research and Information Network, University of Alberta, School of Energy and the Environment; 2011. p.37. 

  25. Watson JG, Chow JC, Fujita EM. Review of volatile organic compound source apportionment by chemical mass balance. Atmos Environ. 2001; 35(9): 1567-1584. 

  26. Han J, Moon K, Kim R, Shin S, Hong Y, Jung I. Preliminary source apportionment of ambient VOCs measured in Seoul metropolitan area by positive matrix factorization. J Korean Soc Atmos Environ. 2006; 22(1): 85-97. 

  27. Park J, Park B, Kim S, Yang Y, Lee K, Bae S, et al. Estimation of contribution by pollutant source of VOCs in industrial complexes of Gwangju using receptor model (PMF). J Environ Sci Int. 2021; 30(3): 219-234. 

  28. Mukund R, Kelly TJ, Spicer CW. Source attribution of ambient air toxic and other VOCs in Columbus, Ohio. Atmos Environ. 1996; 30(20): 3457-3470. 

  29. Brown SG, Frankel A, Hafner HR. Source apportionment of VOCs in the Los Angeles area using positive matrix factorization. Atmos Environ. 2007; 41(2): 227-237. 

  30. Shin H, Kim J, Kim Y. Quality assurance and quality control method for volatile organic compounds measured in the photochemical assessment monitoring station. Part Aerosol Res. 2011; 7(1): 31-44. 

  31. Ling ZH, Guo H, Cheng HR, Yu YF. Sources of ambient volatile organic compounds and their contributions to photochemical ozone formation at a site in the Pearl River Delta, southern China. Environ Pollut. 2011; 159(10): 2310-2319. 

  32. Andersen AN, Cook GD, Corbett LK, Douglas MM, Eager RW, Russell-Smith J, et al. Fire frequency and biodiversity conservation in Australian tropical savannas: implications from the Kapalga fire experiment. Austral Ecol. 2005; 30(2): 155-167. 

  33. Milic A, Mallet MD, Cravigan LT, Alroe J, Ristovski ZD, Selleck P, et al. Biomass burning and biogenic aerosols in northern Australia during the SAFIRED campaign. Atmos Chem Phys. 2017; 17(6): 3945-3961. 

  34. Pekey B, Yilmaz H. The use of passive sampling to monitor spatial trends of volatile organic compounds (VOCs) at an industrial city of Turkey. Microchem J. 2011; 97(2): 213-219. 

  35. Choi E, Heo JB, Yi SM. Apportioning and locating nonmethane hydrocarbon sources to a background site in Korea. Environ Sci Technol. 2010; 44(15): 5849-5854. 

  36. Zhou J, You Y, Bai Z, Hu Y, Zhang J, Zhang N. Health risk assessment of personal inhalation exposure to volatile organic compounds in Tianjin, China. Sci Total Environ. 2011; 409(3): 452-459. 

  37. Liu Y, Kong L, Liu X, Zhang Y, Li C, Zhang Y, et al. Characteristics, secondary transformation, and health risk assessment of ambient volatile organic compounds (VOCs) in urban Beijing, China. Atmos Pollut Res. 2021; 12(3): 33-46. 

  38. Bari MA, Kindzierski WB. Ambient volatile organic compounds (VOCs) in Calgary, Alberta: sources and screening health risk assessment. Sci Total Environ. 2018; 631-632: 627-640. 

  39. Korea Central Cancer Registry. Annual Report of Cancer Statistics in Korea in 2018. Goyang: National Cancer Center; 2021. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로