$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

하절기 주간 포그 냉방과 야간 히트펌프 냉방이 온실 환경 및 작물에 미치는 영향 분석
Analysis of the Effect of Fog Cooling during Daytime and Heat Pump Cooling at Night on Greenhouse Environment and Planst in Summer 원문보기

생물환경조절학회지 = Journal of bio-environment control, v.30 no.4, 2021년, pp.328 - 334  

이태석 (농촌진흥청 국립원예특작과학원 시설원예연구소) ,  김진구 (농촌진흥청 국립원예특작과학원 시설원예연구소) ,  박석호 (농촌진흥청 국립원예특작과학원 시설원예연구소) ,  이충근 (농촌진흥청 국립원예특작과학원 시설원예연구소)

초록
AI-Helper 아이콘AI-Helper

본 연구에서는 하절기 토마토 재배 시 주간 포그 냉방, 야간히트펌프 냉방을 처리를 하여 냉방 처리가 온실 내 온습도, 작물의 생육 및 수확량에 미치는 영향을 분석하였다. 하절기 주간에 차광 처리한 대조구 온실의 평균 온습도는 32.1℃, 59.4%였고, 포그 처리한 시험구 온실의 평균 온도는 30.0℃, 74.3%로 나타났다. 이 때 외부의 평균 온습도는 31.4℃, 57.7%로 대조구 온실의 온도는 외기보다 0.7℃ 높았으나 시험구 온실의 온도는 외기보다 1.4℃, 대조구보다 2.1℃ 낮게 나타났다. 평균 습도는 시험구 온실 74.3%, 대조구 온실 59.4%로 포그 처리를 한 시험구에서 높게 나타났다. 야간 대조구 온실의 평균 온습도는 25.2℃, 85.1%였고, 히트펌프로 냉방을 한 시험구 온실의 평균 온습도는 23.4℃, 82.4%, 로 나타났다. 야간 외부의 평균 온습도는 24.4℃, 88.2%로 대조구 온실의 온도는 외기보다 0.8℃ 높았으나 시험구 온실의 온도는 외기보다 1.0℃, 대조구보다 1.8℃ 낮게 나타났다. 평균 습도는 시험구 온실 82.4%, 대조구 온실 85.1%로 나타나 시험구 온실의 습도가 더 낮게 나타났다. 작물 생육은 정식하고 8주 후에는 두 온실 간의 큰 차이는 없는 것으로 나타났으나 냉방 처리 후에는 시험구 온실의 작물이 대조구에 비해 경경, 초장, SPAD 값이 높게 나타났다. 토마토의 수확량은 냉방을 시작하고 2주 후까지 총 생산량의 차이는 1.2%로 큰 차이 없었으나 3주 후와 4주 후의 일 생산량이 시험구에서 대조구보다 많게 나타났다. 최종적으로는 시험구의 수확량이 81.3kg, 대조구의 수확량이 73.8kg으로 시험구가 대조구에 비해 10.2% 많게 나타남으로써 하절기 주간 포그 냉방, 야간 히트펌프 냉방이 작물 성장에 적합한 환경을 조성해 줌으로써 생육 및 생산성에 영향을 미친 것으로 판단된다. 냉방 처리에 따른 경제성을 비교해보면 대조구 온실에서는 142,166원의 수익이 있었던 반면 시험구 온실에서는 28,727원의 손해가 발생하여 냉방 처리는 경제성이 떨어지는 것으로 나타났다. 그러나 재식 밀도, 히트펌프 운용 시간 및 기간을 조절하여 에너지 사용은 줄이면서 생산성을 증가시킨다면 경제성도 확보할 수 있을 것으로 기대되며 이에 대한 추가 연구가 필요할 것으로 판단된다.

Abstract AI-Helper 아이콘AI-Helper

This study was conducted to analyze the effect of fog cooling during daytime and heatpump cooling at night in greenhouses in summer. During daytime, the average temp. and RH of the control greenhouse which had shading screen were 32.1℃ and 59.4%. and the average temp. and RH of the test green...

주제어

참고문헌 (16)

  1. Abdel-Ghany A.M., and T. Kozai 2006, Dynamic modeling of the environment in naturally ventilated, fog-cooled greenhouse. Renew Energ 31:1521-1539. doi:10.1016/j.renene.2005.07.013 

  2. Kim K.D., E.H. Lee, W.B. Kim, J.G. Lee, D.L. Yoo, Y.S. Kwon, J.N. Lee, S.W. Jang, and S.C. Hong 2011, Effects of several cooling methods and cool water hose bed culture on growth and microclimate in summer season cultivation of narrowhead goldenray (Ligularia stenocephaia). J Bio-Env Con 20:116-122. (in Korea) 

  3. Kim M.K., G.S. Kim, and S.W. Nam 2001, Efficient application of greenhouse cooling system. Ministry for Food, Agriculture, Forestry and Fisheries. pp 28-118. (in Korean) 

  4. Korea Agro-Fisheries&Food Trade Corporation 2021, The average price of tomatoes. Available via https://www.kamis.or.kr/customer/price/wholesale/item.do 

  5. Lee H.W., and Y.S. Kim 2011, Application of low pressure fogging system for commercial tomato greenhouse cooling. J Bio-Env Con 20:1-7. (in Korean) 

  6. Lee S.Y., C.G. Lee, S.H. Euh, K.C. Oh, J.H. Oh, and D.H. Kim 2014, Dehumidification and temperature control for greehouse using Lithium Bromide solution and cooling coil. Protected Hort Plant Fac 23:337-341. (in Korean) doi:10.12791/KSBEC.2014.23.4.337 

  7. Lim M.Y. H.J. Jeong, M.Y. Roh, G.L. Choi, S.H. Kim, and S.H. Choi 2021, Changes in greenhouse temperature and solar radiation by fogging and shading during hydroponics in summer season. J Bio-Env Con 30:230-236. (in Korean) doi:10.12791/KSBEC.2021.30.3.230 

  8. Nam S.W. 2000, Actual utilization and thermal environment of greenhouses according to several cooling methods during summer season. J Bio-Env Con 9:1-10. (in Korean) 

  9. Nam S.W., K.S. Kim, and G.A. Giacomelli 2005, Improvement of cooling efficiency in greenhouse for system using the dehumidifier. J Bio-Env Con 14:29-37. (in Korean) 

  10. Park S.H., J.P. Moon, J.K. Kim, and S.H. Kim 2020, Development of fog cooling control system and cooling effect in greenhouse. Protected Hort Plant Fac 29:265-276. (in Korean) doi:10.12791/KSBEC.2020.29.3.265 

  11. Rhee H.C., G.L. Choi, K.H. Yeo, M.W. Cho, and I.W. Cho 2015, Effect of fog-cooling on the growth and yield of hydroponic paprika in grown summer season. Protected Hort Plant Fac 24:258-263. (in Korean) doi:10.12791/KSBEC.2015.24.3.258 

  12. Rural Development Administration (RDA) 2019, Agricultural technology guide 106. Rural Development Administration, Korea, pp 38-39. 

  13. Sethi V.P., and S.K. Sharma 2007, Survey of cooling technologies for worldwide agricultural greenhouse applications. Sol Energy 81:1447-1459. doi:10.1016/j.solener.2007.03.004 

  14. Won J.H., B.C. Jeong, J.K. Kim, and S.J. Jeon 2009, Selection of suitable cultivars for the hydroponics of sweet pepper (Capsicum annuum L.) in the alpine area in summer. J Bio-Env Con 18:425-430. (in Korean) 

  15. Yu I.H., M.K. Kim, H.J. Kwon, and S.S. Kim 2002, Development of CFD model for estimation of cooling effect of fog cooling system in greenhouse. J Bio-Env Con 11:93-100. (in Korean) 

  16. Yu I.H., Y.I. Nam, T.Y. Kim, M.Y. Roh, and M.W. Cho 2006, Effect of newly developed fan and mist evaporative cooling system on greenhouse cooling and growth of cucumber. J Bio-Env Con 15:91-97. (in Korean) 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로