$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

취약도 곡선에 의한 수리구조물 하부 지반의 확률론적 침투 안정성 평가
Probabilistic Assessment of Seepage Stability of Soil Foundation under Water Retaining Structures by Fragility Curves 원문보기

韓國地盤工學會論文集 = Journal of the Korean geotechnical society, v.37 no.10, 2021년, pp.41 - 54  

조성은 (한경대학교 건설환경공학부)

초록
AI-Helper 아이콘AI-Helper

본 연구에서는 침투조절을 위하여 댐이나 보와 같은 수리구조물의 기초지반에 설치되는 차수벽체 형태에 따른 포화 침투거동의 확률론적 거동을 연구하였다. 이를 위해 투수계수의 불확실성과 공간적 변동성을 고려한 정상상태 흐름의 유한요소해석에 기반을 둔 Monte Carlo 시뮬레이션을 수행하였다. Monte Carlo 시뮬레이션의 결과로부터 평가된 지반의 침투거동에 대한 확률분포로부터 수위 변동에 따른 파괴확률을 구함으로써 취약도 곡선을 작성하였다. 취약도 곡선은 침투로 인한 수리구조물과 기초지반의 안정성을 검토하기 위하여 기초지반을 통한 침투유량, 구조물에 작용하는 양압력, 하류 유출면에서의 유출동수경사에 대하여 작성하였다. 생성된 취약도 곡선들로부터 차수벽체 설치 형태가 수위 상승 시 수리구조물과 기초지반의 안정에 대한 신뢰성에 미치는 영향을 연구하였다.

Abstract AI-Helper 아이콘AI-Helper

In this study, probabilistic steady seepage behavior of soil foundation beneath water retaining structures according to the location of cutoffs was studied. A Monte Carlo Simulation based on the random finite element method that considers the uncertainty and spatial variability of soil permeability ...

주제어

표/그림 (12)

참고문헌 (20)

  1. Ahmed, A. A. (2012), "Stochastic Analysis of Seepage under Hydraulic Structures Resting on Anisotropic Heterogeneous Soils", Journal of Geotechnical and Geoenvironmental Engineering, Vol. 139, No.6, pp.1001-1004 . 

  2. Cho, S. E. (2011), "Probabilistic Seepage Analysis by the Finite Element Method Considering Spatial Variability of Soil Permeability", Journal of the Korean Geotechnical Society, Vol.27, No.10, pp. 93-104 (in Korean). 

  3. Cho, S. E. (2019), "Probabilistic Failure-time Analysis of Soil Slope under Rainfall Infiltration by Numerical Analysis", Journal of the Korean Geotechnical Society, Vol.35, No.12, pp.45-58 (in Korean). 

  4. Fenton, G. A. and Griffiths, D. V. (1997), "Extreme Hydraulic Gradient Statistics in Stochastic Earth Dam", Journal of Geotechnical and Geoenvironmental Engineering, Vol.123, No.11, pp.995-1000. 

  5. Griffiths, D. V. and Fenton, G. A. (1998), "Probabilistic Analysis of Exit Gradients due to Steady Seepage", Journal of Geotechnical and Geoenvironmental Engineering, Vol.124, No.9, pp.789-797. 

  6. Johari, A. and Heydari, A. (2018), "Reliability Analysis of Seepage Using an Applicable Procedure Based on Stochastic Scaled Boundary Finite Element Method", Engineering Analysis with Boundary Elements, Vol.94, pp.44-59. 

  7. Kennedy, R. P. and Ravindra, M. K. (1984), "Seismic Fragilities for Nuclear Power Plant Risk Studies", Nuclear Engineering and Design, Vol.79, No.1, pp.47-68. 

  8. Kennedy, R. P., Cornell, C. A., Campbell, R. D., Kaplan, S., and Perla, H. F. (1980), "Probabilistic Seismic Safety Study of an Existing Nuclear Power Plant", Nuclear Engineering and Design, Vol.59, No.2, pp.315-338. 

  9. KWRA (2011), Dam Design Criteria, Korea Water Resources Association (in Korean). 

  10. Lacasse, S. and Nadim, F.(1996), "Uncertainties in characterizing soil properties", Uncertainty in the Geologic Environment: From theory to practice, (eds Shackleford, CD, Nelson, PP and Roth, MJS.), Geotechnical Special Publication, ASCE, No.58, pp.49-75. 

  11. Martinovic, K., Reale, C., and Gavin, K. (2018), "Fragility Curves for Rainfall-induced Shallow Landslides on Transport Networks", Canadian Geotechnical Journal, Vol.55, No.6, pp.852-861. 

  12. Porter, K. (2018), A Beginner's Guide to Fragility, Vulnerability, and Risk, University of Colorado Boulder, http://spot.colorado.edu/~porterka/Porter-beginners-guide.pdf 

  13. Rossi, N., Bacic, M., Kovacevic, M. S., and Libric, L. (2021), "Development of Fragility Curves for Piping and Slope Stability of River Levees", Water, Vol.13, No.5, 738, https://doi.org/10.3390/w13050738 

  14. Simm, J. and Tarrant, O. (2018), "Development of Fragility Curves to Describe the Performance of UK Levee Systems", Proceedings of the Twenty-Sixth International Congress on Large Dams, Vienna, Austria. 

  15. Srivastava, A., Sivakumar Babu, G. L., and Haldar, S. (2010), "Influence of Spatial Variability of Permeability Property on Steady State Seepage Flow and Slope Stability Analysis", Engineering Geology, Vol.110, No.(3-4), pp.93-101. 

  16. Tsompanakis, Y., Lagaros, N. D., Psarropoulos, P. N., and Georgopoulos, E.C. (2010), "Probabilistic Seismic Slope Stability Assessment of Geostructures", Structure and Infrastructure Engineering, Vol.6, No.1-2, pp.179-191. 

  17. USACE (1996), Risk-based Analysis for Flood Damage Reduction Studies, US Army Corps of Engineers, Engineer Manual 1110-2-1619. 

  18. Vanmarcke, E. H. (1983), Random Fields: Analysis and Synthesis, The MIT Press, Cambridge, MA. 

  19. Vorogushyn, S., Merz, B., and Apel, H. (2009), "Development of Dike Fragility Curves for Piping and Micro-instability Breach Mechanisms", Natural Hazards and Earth System Sciences, Vol9, pp.1383-1401. 

  20. Wu, X. Z. (2015), "Development of Fragility Functions for Slope Instability Analysis", Landslides, Vol.12, No.1, pp.165-175. 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로