$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] 황육계 복숭아 품종 선발용 SNP 마커
SNP Markers Useful for the Selection of Yellow-fleshed Peach Cultivar 원문보기

韓國資源植物學會誌 = Korean journal of plant resources, v.34 no.5, 2021년, pp.443 - 450  

김세희 (농촌진흥청 국립원예특작과학원 과수과) ,  권정현 (농촌진흥청 국립원예특작과학원 과수과) ,  조강희 (농촌진흥청 국립원예특작과학원 과수과) ,  신일섭 (농촌진흥청 국립원예특작과학원 과수과) ,  전지혜 (농촌진흥청 국립원예특작과학원 과수과) ,  조상윤 (농촌진흥청 국립원예특작과학원 과수과)

초록
AI-Helper 아이콘AI-Helper

복숭아 과육색은 상업적으로 중요한 분류 기준이며 영양 품질에 영향을 미친다. 카로티노이드가 다량 함유된 새로운 황색 과육 품종을 육성하기 위해서는 많은 교배 조합과 세대가 진전되어야 한다. 따라서 육종 효율을 높이기 위해서는 경제적으로 중요한 형질을 가진 교배 집단과 유전자원에 적용할 조기 선발마커를 개발할 필요가 있다. 과육색이 다르게 발현되는 복숭아 품종의 유전자 발현을 비교하기 위해 2개의 cDNA library를 제작하였다. 황색 과육 품종인 '장호원황도'와 백색 과육 품종인 '미백도'의 유전자 발현 차이를 보기 위해 차세대 염기서열 분석 기술을 사용하였고 두 품종으로부터 얻은 EST의 염기서열을 결정하고 기존에 보고된 유전자와의 상동성을 분석하였다. EST 데이터로부터 황색 과육 품종 17개와 백색 과육 품종 22개를 구분할 수 있는 2종의 SNP 마커(SNP ID, ppa002847m:cds와 SNP ID, ppa002540m:cds)를 선발하였고, HRM 방법으로 분석하였다. 본 연구 결과는 복숭아 육종에 유용하게 사용할 수 있으며 복숭아 품종의 다양한 색 변화에 관한 분자 기작 연구에 좋은 참고자료가 될 수 있을 것이다.

Abstract AI-Helper 아이콘AI-Helper

Peach flesh color is commercially important criteria for classification and has implications for nutritional quality. To breed new yellow-fleshed peach cultivar many cross seedlings and generations should be maintained. Therefore it is necessary to develop early selection molecular markers for scree...

주제어

표/그림 (9)

참고문헌 (22)

  1. Ahmad, R., D. Potter and S.M. Southwick. 2004. Genotyping of peach and nectarine cultivars with SSR and SRAP molecular markers. J. Amer. Soc. Hort. Sci. 129(2):204-210. 

  2. Ahmad, R., D.E. Parfitt, J. Fass, E. Ogundiwin, A. Dhingra, T.M. Gradziel, D. Lin, N.A. Joshi, P.J. Martinez-Garcia and C.H. Crisosto. 2011. Whole genome sequencing of peach (Prunus persica L.) for SNP identification and selection. BMC Genomics doi:10.1186/1471-2164-12-569. 

  3. Altschul, S.F., W. Gish, W. Miller, E.W. Myers and D.J. Lipman. 1990. Basic local alignment search tool. J. Mol. Biol. 215: 403-410. 

  4. Ashburner, M., C.A. Ball, J.A. Blake, D. Botstein, H. Butler, J.M. Cherry, A.P. Davis, K. Dolinski, S.S. Dwight, J.T. Eppiq, M.A. Harris, D.P. Hill, L. Issel-Tarver, A. Kasarskis, S. Lewis, J.C. Matese, J.E. Richardson, M. Rinqwald, G.M. Rubin and G. Sherlock. 2000. Gene ontology: tool for the unification of biology. Nature Genet. 25(1):25-29. 

  5. Bliss, F.A., S. Arulsekar, M.R. Foolad, V. Becerra, A.M. Gillen, M.L. Warburton, A.M. Dandekar, G.M. Kocsisne and K.K. Mydin. 2002. An expanded genetic linkage map of Prunus based on an interspecific cross between almond and peach. Genome 45:520-529. 

  6. Brandi, F., E. Bar, F. Mourgues, G. Horvath, E. Turcsi, G. Giuliano, A. Liverani, S. Tartarini, E. Lewinsohn and C. Rosati. 2011. Study of 'Redhaven' peach and its white-fleshed mutant suggests a key role of CCD4 carotenoid dioxygenase in carotenoid and norisoprenoid volatile meta-bolism. BMC Plant Biol. 11:24. 

  7. Cao, X.Q., J.Y. Wang, L. Zhou, B. Chen, Y. Jin and Y.W. He. 2018. Biosynthesis of the yellow xanthomonadin pigments involves an ATP-dependent 3-hydroxybenzoic acid: acyl carrier protein ligase and an unusual type II polyketide synthase pathway. Mol. Microbiol. 110(1):16-32. 

  8. Cevallos-Casals, B.A., B. David, R.O. William and L. Cisneros-Zevallos. 2006. Selecting new peach and plum genotypes rich in phenolic compounds and enhanced functional properties. Food Chemistry 96:273-280. 

  9. Connors, C.H. 1920. Some notes on the inheritance of unit characters in the peach. Proc. Am. Soc. Hortic. Sci. 16:24-36. 

  10. Dhanapal, A.P. and C.H. Crisosto. 2013. Association genetic of chilling injury susceptibility in peach (Prunus persica (L.) Batsch) across multiply years. 3Biotech 3:481-490. 

  11. Falchi, R., E. Vendramin, L. Zanon, S. Scalabrin, G. Cipriani, I. Veerde, G. Vizzotto and M. Morgante. 2013. Three distinct mutational mechanisms actiong on a single gene underpin the origin of yellow flesh in peach. The Plant J. 6:15-187. 

  12. Forkmann, G. and S. Martens. 2001. Metabolic engineering and applications of flavonoids. Curr. Opin. in Biotech. 12:155-160. 

  13. Hui-Hsien, C. and H.H. Michael. 2001. DNA sequence quality trimming and vector removal. Bioinformatics 17(12):1093-1104. 

  14. Kim, S.H., E.Y. Nam, K.H. Cho, J.H. Jun and K.H. Chung. 2019. Development of SNP molecular marker for red-fleshed color identification of peach genetic resources. Korean J. Plant Res. 32(4):303-311. 

  15. Margulies, M., M. Egholm, W.E. Altman, S. Attiya, J.S. Bader, L.A. Bemben, J. Berka, M.S. Braverman, Y.J. Chen, Z. Chen, S.B. Dewell, L. Du, J.M. Fierro, X.V. Gomes, B.C. Godwin, W. He, S. Helgesen, C.H. Ho, G.P. Irzyk, S.C. Jando, M.L. Alenquer, T.P. Jarvie, K.B. Jirage, J.B. Kim, J.R. Knight, J.R. Lanza, J.H. Leamon, S.M. Lefkowitz, M. Lei, J. Li, K.L. Lohman, H. Lu, V.B. Makhijani, K.E. McDade, M.P. McKenna, E.W. Myers, E. Nickerson, J.R. Nobile, R. Plant, B.P. Puc, M.T. Ronan, G.T. Roth, G.J. Sarkis, J.F. Simons, J.W. Simpson, M. Srinivasan, K.R. Tartaro, A. Tomasz, K.A. Vogt, G.A. Volkmer, S.H. Wang, Y. Wang, M.P. Weiner, P. Yu, R.F. Begley and J.M. Rothberg. 2005. Genome sequencing in microfabricated high-density picolitre reactors. Nature 437:376-380. 

  16. Murayama, S. and H. Handa. 2007. Genes for alkaline/neutral invertase in rice: alkaline/neutral invertases are located in plant mitochondria and also in plastids. Planta 225:1193-1203. 

  17. Prince, J.P., Y. Zhang, E.R. Radwanski and M.M. Kyle. 1997. A versatile and high-yielding protocol for the preparation of genomic DNA from Capsicum spp. (pepper). Hortscience 32:937-939. 

  18. Shujun, C., P. Jeff and C. John. 1993. A simple and efficient method for isolating RNA from pine trees. Plant Mol. Biol. Rep.11(2):113-116. 

  19. Shumskaya, M. and E.T. Wurtzel. 2013. The carotenoid biosynthetic pathway: Thinking in all dimensions. Plant Sci. 208:58-63. 

  20. Verde, I., A.G. Abbott, S. Scalabrin, S. Jung, S. Shu, F. Marroni and F. Salamini. 2013. The high-quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution. Nat. Genet. 45:487-494. 

  21. Verde, I., N. Bassil, S. Scalabrin, B. Gilmore, C.T. Lawley, K. Gasic, D. Micheletti, U.R. Rosyara, F. Cattonaro, E. Vendramin, D. Main, V. Aramini, A.L. Blas, T.C. Mockler, D.W. Bryant, L. Wklhelm, M. Troggio, B. Sosinski, M.J. Aranzana, P. Arus, A. Iezzoni, M. Morgante and C. Peace. 2012. Development and evaluation of a 9K SNP array for peach by internationally coordinated SNP dection and validation in breeding germplasm. Plos One 7(4):e35668. 

  22. Wittwer, C.T., G.H. Reed, C.N. Gundry, J.G. Vandersteen and R.J. Pryor. 2003. High-resolution genotyping by amplicon melting analysis using LCGreen. Clinic Chem. 49:853-860. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로